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Abstract— This paper presents an LMI-based synthesis pro-
cedure for distributed event-based state estimation. Multiple
agents observe and control a dynamic process by sporadically
exchanging data over a broadcast network according to an
event-based protocol. In previous work [1], the synthesis of
event-based state estimators is based on a centralized design. In
that case three different types of communication are required:
event-based communication of measurements, periodic reset
of all estimates to their joint average, and communication of
inputs. The proposed synthesis problem eliminates the commu-
nication of inputs as well as the periodic resets (under favorable
circumstances) by accounting explicitly for the distributed
structure of the control system.

I. INTRODUCTION

Present day control systems are typically implemented
on digital hardware with periodic exchange of information
between the system’s various components (sensors, actuators,
controllers). While the design of digital control systems
with periodic communication is well understood, it comes
with a fundamental limitation: system resources such as
computation and communication are used at predetermined
time instants irrespective of the current state of the system,
or the information content of the data to be passed between
the components. Because of this, aperiodic or event-based
communication has recently gained popularity as an alter-
native to periodic communication for control, estimation,
and optimization (see overview articles [2]–[5]). While the
seminal papers [6], [7] and following early work mostly con-
cerned fundamental questions of event-based communication
for a single feedback loop, the main potential of event-based
strategies arguably lies with distributed problems, where
multiple components share common resources such as a
communication network.

We consider event-based communication for a distributed
estimation and control problem, where multiple sensor-
actuator-agents observe and control a dynamic system and
communicate with each other via a common bus (see Fig. 1).
In previous work [1], [8], a method for distributed event-
based state estimation was proposed for such a system. The
event-based estimator implemented on each agent has two
main components: the event generator (EG), which triggers
the sporadic communication of local sensor measurements
to all other agents, and the state estimator, which fuses the
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Fig. 1. Networked control system considered in this paper (shown here with
two agents as an example). Each agent observes part of the system state x
through local sensors yi. The Estimator on each agent computes an estimate
of x, the event generator (EG) triggers the communication of local sensor
measurements based on a threshold logic, and the Controller computes
commands ui for the local actuator. Event-triggered communication is
indicated by dashed arrows, while periodic communication is shown by
solid ones. In [1], three types of communication are required: event-based
communication of measurements (blue), periodic resetting of all estimates
to their average (red), and periodic communication of inputs (green). In this
paper, the structure of the event-based estimation is kept, but communication
of inputs and (under favorable conditions) estimator resets are eliminated.

measurement data received from the network to compute an
estimate of the state. Predictions from the estimator are used
in the EG for making the transmit decisions, and its state
estimates can be used for feedback control (cf. Fig. 1).

The methods [1], [8] are effective in reducing measure-
ment communication: sensor data is exchanged between the
agents only when necessary to meet a certain estimation
performance. However, they also require two additional types
of inter-agent communication (cf. Fig. 1): (i) periodic ex-
change of control inputs and (ii) periodic (albeit infrequent)
exchange and reset of estimates, to guarantee stability in case
of differences between the agents’ estimates, for example,
from imperfect communication or inaccurate initialization.

In this paper, a modified design is proposed that alle-
viates (and ideally avoids) these additional communication
requirements. We pose the design of the estimator gains as a
linear matrix inequality (LMI) optimization problem, which
under favorable conditions guarantees stability of the event-
based estimation in the presence of differences between
the agents, without periodic resetting of the estimates. For
problems, where the LMI-design cannot guarantee stability
without resetting, it lends itself to an event-driven resetting
mechanism as an alternative to the periodic resets in [1].
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Moreover, the periodic exchange of control inputs is avoided
by each agent locally estimating the full input vector from its
state estimate. Ideally, only event-triggered communication
of measurements remains with the modified scheme.

Outline of the paper: After a brief review of some related
work, the distributed event-based estimation method from [1]
is summarized in Sec. II. LMI-based stability conditions for
the event-based estimation problem are derived in Sec. III,
followed by the corresponding synthesis problem for the esti-
mator gains in Sec. IV. The improved event-based estimator
design is illustrated with a simulation example in Sec. V,
and the paper concludes with remarks in Sec. VI.

Related work: LMI-based designs for distributed event-
based estimation are discussed in [9], [10] for different
problems, where communication between agents is according
to a graph topology. In [9], an LMI-design is proposed for
the estimator gains first assuming periodic communication,
which is then implemented as an event-based scheme using
event-triggers on local state estimates. The authors in [10]
consider event-triggers on measurements and formulate an
LMI synthesis problem for both estimator gains and trig-
gering levels. Both references do not explicitly consider
disturbances on the estimates, and they exclusively treat the
estimation problem, while we simultaneously address stabil-
ity of the distributed event-based control system resulting
when local estimates are used for feedback control.

For further references on event-based estimation and con-
trol, see surveys [2]–[5], and references therein and in [1].

II. PROBLEM FORMULATION

In this section, the networked dynamic system is intro-
duced (Sec. II-A) along with the distributed event-based
estimation and control architecture (Sec. II-B and II-C), and
the objective of this paper is formulated (Sec. II-D).

A. Networked System

Consider the discrete-time linear system

x(k) = Ax(k−1) +Bu(k−1) + v(k−1) (1)
y(k) = Cx(k) + w(k) (2)

with time index k, state x(k) ∈ Rn, control input u(k) ∈
Rq , measurement y(k) ∈ Rp, disturbances v(k) ∈ Rn,
w(k) ∈ Rp, and all matrices of corresponding dimensions.
The disturbances w and v are assumed bounded; (A,B) and
(A,C) are assumed stabilizable and detectable, respectively.

The inputs u(k) and measurements y(k) are decomposed
corresponding to N sensor-actuator-agents:

B u(k−1) =
[
B1 B2 . . . BN

] 
u1(k)
u2(k)

...
uN (k)

 (3)

y(k) =


y1(k)
y2(k)

...
yN (k)

 =


C1

C2
...
CN

x(k) +


w1(k)
w2(k)

...
wN (k)

 (4)

where ui(k) ∈ Rqi is agent i’s input and yi(k) ∈ Rpi its
measurement. Note that agents may be heterogeneous and,
in particular, their input and output dimensions qi and pi
may differ (including the case qi = 0 or pi = 0, i.e. no
actuator or sensor is present for agent i). Local stabilizability
or detectability is not required; that is, (A,Bi) may be not
stabilizable, and (A,Ci) may be not detectable.

The agents can exchange sensor data yi(k) with each other
over a broadcast network; that is, if one agent communicates,
all other agents will receive the data. The event-based
mechanism determining when sensor data is exchanged will
be made precise in the next subsection. The agents do not
share input data ui(k) with each other, which is in contrast
to [1], [8]. Agents are assumed to be synchronized in time,
and network communication is assumed to be instantaneous
and without delay.

We assume that a state-feedback controller

u(k) = Fx(k) (5)

is given, which renders A+BF asymptotically stable (mag-
nitude of all eigenvalues strictly less than one). The controller
can be designed using standard methods, see e.g. [11].

B. Distributed Event-Based State Estimation

The distributed, event-based state estimation architecture
from [1], [8] is briefly summarized next. It serves as the
starting point for the LMI-based design of estimator gains
proposed later. According to this architecture, each agent
implements an event generator, which makes the transmit
decision for the local measurement, and a state estimator,
which computes a local state estimate.

1) Event Generator: The event generator on agent i
decides whether or not the local measurement yi(k) is
broadcast to all other agents by applying the decision rule:

transmit yi(k) ⇔ ||yi(k)− Cix̂i(k|k−1)||2 ≥ δi (6)

where δi ≥ 0 is a design parameter, x̂i(k|k−1) is agent i’s
prediction of the state x(k) based on measurements until time
k−1 (to be made precise below), and Cix̂i(k|k−1) is agent
i’s prediction of its measurement yi(k). Hence, measurement
yi(k) is transmitted if, and only if, its prediction from
the previous estimate deviates by more than the tolerable
threshold δi. Let

I(k) := {i | 1 ≤ i ≤ N, ||yi(k)− Cix̂i(k|k−1)||2 ≥ δi}
(7)

denote the index set of measurements transmitted at time k.
2) State Estimator: Let x̂i(k) = x̂i(k|k) denote agent

i’s estimate of the system state x(k) computed from all
measurements I(`) for ` = 1, . . . , k. The recursive estimator
update of agent i is given by

x̂i(k|k−1) = Ax̂i(k−1|k−1) +Bûi(k−1) (8)
x̂i(k|k) = x̂i(k|k−1) (9)

+
∑
j∈I(k)

Lj
(
yj(k)− Cj x̂i(k|k−1)

)
+ di(k)



where ûi(k − 1) ∈ Rq is agent i’s belief of the input
vector u(k), Lj are observer gains to be designed, and di(k)
represents a disturbance, which is assumed to be bounded.
The disturbance di has been introduced in [1] to model
mismatches between the estimates of the individual agents,
which may stem from, for example, unequal initialization,
different computation accuracy, or imperfect communication.

Note that the event-based estimator computes the correc-
tion (9) from all measurements I(k) that satisfy (6). Hence,
the local measurement yi(k) is used in the update only if
it satisfies (6), even though it could actually be used in the
update at every step without requiring any additional com-
munication. This scheme was suggested in [8] to ensure that
(in the absence of disturbances di) all agents have consistent
estimates, since all estimates are updated with the same set
of measurements I(k). We follow the same basic idea herein.
See Sec. VI for a brief discussion on an alternative estimator
update law employing local measurements at every step.

C. Distributed Control

The control ui(k) on agent i is computed according to the
distributed law

ui(k) = Fix̂i(k) (10)

where F T = [F T
1 F

T
2 . . . F

T
N ] is the decomposition of the

state-feedback gain F in (5) according to the dimensions
of ui(k). In [1], [8], it is assumed that each agent broadcasts
its control component ui(k) at every step, so that each agent
knows the full input vector u(k) and can implement (8) with

ûi(k−1) = u(k−1). (11)

Herein, we do not require the communication of the inputs
ui(k) and instead use a local estimate of the input vector

ûi(k−1) = Fx̂i(k−1) (12)

in (8). Avoiding the communication of inputs in this way
was also suggested and experimentally tested in [12], but
stability of this scheme was not formally proven.

D. Objective

In brief, we seek to design observer gains Lj such that
the closed-loop system, given by (1), (2), (8), (9), (10), and
(12), is stable for bounded disturbances v, w, and di.

In [8], closed-loop stability is shown for di ≡ 0 and all
inputs ui(k) being communicated such that (11) is imple-
mented instead of (12). The estimator gains Lj are obtained
in [8] from a straightforward centralized observer design (a
Luenberger observer). The only requirement for the design
is that the gains stabilize the centralized, full communication
case.

In [1], it is shown that stability of the design in [8] may be
lost if di 6≡ 0. To recover stability, synchronous resets of all
agents’ estimates x̂i(k) to their joint average are proposed.
Even though resets typically occur at a lower frequency
than the event triggers (6), this strategy clearly requires the
exchange of the agents’ estimates at resetting instants and
thus extra communication.

Herein, we consider the disturbance case di 6≡ 0 and seek
to avoid all inter-agent communication besides the event-
triggers (6). Firstly, to avoid communication of inputs, we
use (12) in place of (11). Secondly, to avoid synchronous
resetting, we formulate an LMI-design for the estimator gains
Lj , which in favorable cases guarantees closed-loop stability
for bounded disturbances di.

III. STABILITY ANALYSIS

Next, the time evolution of the state trajectory and the
agents’ estimation errors are derived. Additionally, the inter-
agent error is introduced, which allows us to express the
closed-loop dynamics as a series of interconnected systems
in strict feedforward form. This will allow us to derive
conditions for the stability of the closed-loop system.

A. Closed-loop Dynamics

The state dynamics are obtained by combining (1) with
(8), (9), and (12):

x(k) = (A+BF )x(k − 1)

−
N∑
j=1

BjFjej(k − 1) + v(k − 1),
(13)

where the estimation error of agent j, ej(k), is defined by
ej(k) := x(k)− x̂j(k).

Defining the inter-agent error to be εji(k) := x̂j(k) −
x̂i(k), the time evolution of agent i’s estimation error is given
by the combination of (1), (5), (8), and (9),

ei(k) = Aei(k − 1) +

N∑
j=1

BjFjεji(k − 1)

−
∑
j∈I(k)

Lj(yj(k)− Cj x̂i(k|k − 1))− di(k) + v(k − 1).

Rearranging the sum over I(k) yields

ei(k) = Aei(k − 1) +

N∑
j=1

BjFjεji(k − 1)− di(k)

+ v(k − 1)−
N∑
j=1

Lj(yj(k)− Cj x̂i(k|k − 1))

+
∑
j∈Ī(k)

Lj(yj(k)− Cj x̂i(k|k − 1))

with

Ī(k) = {j | 1 ≤ j ≤ N, ||yj(k)− Cj x̂j(k|k − 1)||2 < δj}.
(14)

Furthermore the expression yj(k) − Cj x̂i(k|k − 1) can be
rewritten as

yj(k)− Cj x̂i(k|k − 1) = Cj(x(k)− x̂i(k|k − 1)) + wj(k)

= Cj

(
Aei(k − 1) +

N∑
m=1

BmFmεmi(k − 1) + v(k − 1)

)
+ wj(k)
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Fig. 2. Simplified block diagram representing the strict feedforward
structure of the closed-loop system. The disturbances di, w, v, and ξ are
bounded (either by assumption or by the transmission rule of the event
generator).

and leads to

ei(k) = (I − LC)Aei(k − 1) + (I − LC)v(k − 1)

+ (I − LC)

N∑
j=1

BjFjεji(k − 1) + ξ(k)− di(k)

+
∑
j∈Ī(k)

LjCj(A+BF )εji(k − 1)−
N∑
j=1

Ljwj(k)

(15)

with

ξ(k) :=
∑
j∈Ī(k)

Lj(yj(k)− Cj x̂j(k|k − 1)). (16)

Moreover, combining equations (8) and (9) implies that
the inter-agent error evolves according to

εji(k) = (I −
∑

m∈I(k)

LmCm)(A+BF )εji(k − 1) + dji(k),

(17)

with dji(k) defined as dji(k) := dj(k) − di(k). Therefore
the inter-agent error is driven by a linear, switched (time
varying) system subject to the bounded disturbances dji.

In summary, the closed-loop dynamics are evolving ac-
cording to (13), (15), and (17). They have a strict feedforward
structure as depicted in Fig. 2.

Stability is discussed using the concept of input-to-state
stability (ISS), see e.g. [13], [14]. It is clear that a linear
system, which is ISS is also bounded-input, bounded-output
stable. Moreover, a cascaded connection of systems is ISS
if each system is ISS on its own, [14]1. Thus, the strict
feedforward structure of the closed-loop system decouples
the stability analysis.

B. Stability of the Inter-Agent Error

As remarked earlier, the inter-agent error is driven by a
switched linear system. Switched linear systems have been
an active topic of research in the past decades, see e.g. [17].

Next a conservative stability condition based on a common
quadratic Lyapunov function is given. Note that it has been
shown in [18] (and in [19] for continuous systems) that
there exists matrices with eigenvalues of magnitude smaller
than one, which do not have a common quadratic Lyapunov

1Note that in [14] the system dynamics were assumed to be continuous,
which is not the case for the inter-agent error. Nevertheless, the continuity
assumption is not needed for the small gain theorem given in [14]. More
about the subtleties of non-continuous system dynamics with respect to
input-to-state stability and Lyapunov stability can be found in [15] or [16].

function, but for which the corresponding switched system
subjected to arbitrary switching is still asymptotically stable.
On the other hand, a switched system consisting of stable
state transition matrices does not necessarily have to be
stable.

For the subsequent analysis, it is convenient to define the
set Π as the set of all possible permutations of {1, 2, . . . , N}.
A permutation is defined as the drawing of zero up to N
elements from {1, 2, . . . , N} without repetition and without
considering the order. Therefore, Π has cardinality |Π| = 2N

and contains the empty set.
The next lemma is a standard result. Nonetheless a detailed

proof is provided, since the derived bound on the common
quadratic Lyapunov function will be used later.

Lemma 3.1: Let the matrix inequality

AT
cl (Πi) PAcl(Πi)− P < 0 (18)

with
Acl(Πi) := (I −

∑
m∈Πi

LmCm)(A+BF ) (19)

be satisfied for a positive definite matrix P ∈ Rn×n, P > 0
and for all permutations Πi ∈ Π. Then, the inter-agent error
is ISS.

Proof: Consider the positive definite quadratic Lya-
punov candidate V : Rn → R≥0,

V (x) = xTPx. (20)

Its time evolution along the trajectories of the inter-agent
error is given by

V (εji(k))− V (εji(k − 1)) = dT
ji(k)Pdji(k)

+ εTji(k − 1)(AT
cl (I(k))PAcl(I(k))− P )εji(k − 1)

+ 2dT
ji(k)PAcl(I(k))εji(k − 1).

Denoting the maximum eigenvalue of
AT

cl (I(k))PAcl(I(k)) − P by λI(k) allows to bound
the growth V (εji(k))− V (εji(k−1)) by

V (εji(k))− V (εji(k−1)) ≤ λI(k)||εji(k−1)||22
+ 2||dji(k)||2||PAcl(I(k))||2||εji(k−1)||2
+ ||dji(k)||22||P ||2.

Completing the squares with α ∈ R, α > 0, leads to

V (εji(k))− V (εji(k−1)) ≤ (λI(k) + α)||εji(k−1)||22

+

(
||PAcl(I(k))||22

α
+ ||P ||2

)
||dji(k)||22

−
(√

α||εji(k−1)||2 +
||PAcl(I(k))||2√

α
||dji(k)||2

)2

.

The evolution of V along the trajectories of the inter-agent
error can therefore be bounded by

V (εji(k))− V (εji(k−1)) ≤
(
λI(k) + α

)
||εji(k − 1)||22

+

(
||PAcl(I(k))||22

α
+ ||P ||2

)
||dji(k)||22. (21)



Since there exists an α such that 0 < α < minΠi∈Π |λΠi
|,

it follows that λI(k) + α can be made strictly negative.
According to [16, Definition 2.2] and [16, Theorem 2.3],
V is therefore a dissipative ISS-Lyapunov function, which
implies input-to-state stability of the inter-agent error.

Remark: Throughout this article, the agents have no
knowledge about the exact input u. Each agent i, i =
1, 2, . . . , N , merely reconstructs u based on its current state
estimate x̂i, i.e. ûi(k) = Fx̂i(k). This is actually essential
in the approach herein for stabilizing the closed-loop system
and avoiding any further communication. In contrast, con-
sider the setting where agents communicate their inputs and
implement (11). In that case the evolution of the inter-agent
error reduces to

εji(k) = (I −
∑

m∈I(k)

LmCm)Aεji(k − 1) + dji(k).

A necessary condition for this system to be stable is that
the matrices (I − LmCm)A have eigenvalues of magnitude
strictly less than one for each m ∈ {1, 2, . . . , N} (assuming
that an arbitrary switching can occur). In order to synthesize
compliant observer gains Lm, (A,Cm) must therefore be
detectable for each m ∈ {1, 2, . . . , N}, which would be a
very strong assumption.2 In case that each agent uses (12),
the inter-agent error is governed by equation (17). Clearly
the assumption of (A,Cm) being detectable is not needed,
as due to the asymptotic stability of A+BF , (A+BF,Cm)
is detectable by construction.

C. Stability of the Agent Error

It will be shown next that asymptotic stability of (I −
LC)A together with a bounded inter-agent error is enough
to guarantee input-to-state stability of the agent error.

Lemma 3.2: Let the inter-agent errors εji, j = 1, . . . , N ,
be bounded. Then, the agent error ei is ISS if and only if
the eigenvalues of (I − LC)A have magnitude strictly less
than one.

Proof: ⇒: Since (I − LC)A is asymptotically stable,
it is enough to show that the disturbances, which the agent
error is subjected to, are bounded. Hence, according to (15) it
suffices to show that ξ is bounded, since di, v, wj and εji are
bounded by assumption. By applying the triangle inequality
to equation (16), it follows from (14) that

||ξ(k)||2 ≤
∑
j∈Ī(k)

||Lj ||2||yj(k)− Cj x̂j(k|k − 1)||2

≤

(
sup

j∈{1,2,...,N}
||Lj ||2

) N∑
j=1

δj

 .

⇐: Choosing disturbances parallel to an eigenvector of
(I−LC)A with corresponding eigenvalue having magnitude
greater or equal to one shows that the agent-error is not ISS
if (I −LC)A has eigenvalues of magnitude greater or equal
to one.

2In case (A,Cm) is detectable for each m ∈ {1, 2, . . . , N} each
agent would be able to reconstruct the full state without any inter-agent
communication.

D. Stability of the Closed-loop System

Using the previous results, the following condition for the
closed-loop dynamics to be ISS can be established.

Theorem 3.3: Let the matrix inequalities

AT
cl (Πi)PAcl(Πi)− P < 0 and

((I − LC)A)TQ(I − LC)A−Q < 0

with Acl given by (19) be fulfilled for positive definite
matrices P ∈ Rn×n, Q ∈ Rn×n, P > 0, Q > 0, and for all
permutations Πi ∈ Π. Then, the closed-loop dynamics are
ISS.

Proof: Note that the second matrix inequality, which is
nothing but the discrete Lyapunov equation (see for example
[20, p. 538]), implies asymptotic stability of (I − LC)A.
From Lemma 3.1 and 3.2, input-to-state stability of the inter-
agent error as well as the agent error follows. Since A+BF
is asymptotically stable by assumption, it follows from (13)
that the state x is ISS.

IV. SYNTHESIS OF STABILIZING OBSERVER GAINS

The analysis of the previous section allowed us to come up
with a criterion to check whether the closed-loop dynamics of
the distributed control system are stable. Applying the Schur
complement to the stability criterion can be used to generate
a convex optimization problem allowing for the synthesis
of stabilizing observer gains. This will be elaborated in the
following.

A. LMI-Synthesis

Using the Schur complement, [21, p. 650] the LMI-
conditions of Theorem 3.3 can be rewritten as3(

P P (I −
∑
m∈Πi

LmCm)(A+BF )
∗ P

)
> 0

for all permutations Πi ∈ Π, and(
Q Q(I − LC)A

AT(I − LC)TQ Q

)
> 0.

By using P = Q and introducing the change of variables
PLm = Wm, m = 1, 2, . . . , N , the previous inequalities
become linear in Wm and P . This leads to the semidefinite
programming problem given by (22). Note that the vector
c ∈ R|Π|, c > 0 is a weighting chosen by the designer, and
λmin ∈ R, λmin < 0, bounds the objective function from
below (see Sec. V for a discussion).

The rationale behind the optimization is that the λis
are tight upper bounds to the maximum eigenvalue of
AT

cl (Πi)PAcl(Πi) − P . Hence, the λΠi
s are made as small

as possible, but not smaller than ciλmin to ensure a bounded
objective function. Having all λΠi

s strictly negative implies
by Theorem 3.3 that the closed-loop system is ISS.

The feasibility of the optimization problem (22) is dis-
cussed next.

Theorem 4.1: If (A,C) is detectable the optimization
problem (22) is feasible.

3Note that ∗ refers to the transposition of the top right block, in this case
∗T = P (I −

∑
m∈Πi

LmCm)(A+BF ).



minimize
λ

|Π|∑
i=1

ciλΠi
s.t.

P ∈ Rn×n, P = PT, λ = (λΠ1
, λΠ2

, . . . , λΠ|Π|) ∈ R|Π|,
Wi ∈ Rn×pi , i = 1, 2, . . . , N,

λΠi
≥ ciλmin, i = 1, 2, . . . , |Π|,(

P (P −
∑
m∈Πi

WmCm)(A+BF )
∗ P + λΠiI

)
≥ 0,

∀ Πi ∈ Π,(
P (P −

∑N
m=1WmCm)A

∗ P

)
> 0.

(22)

Proof: Since (A,C) is detectable there exists a feed-
back matrix L such that (I−LC)A is asymptotically stable.
This implies the existence of a matrix P ∈ Rn×n with
P = PT > 0, which fulfills(

P P (I −
∑N
m=1 LmCm)A

∗ P

)
> 0.

By substituting Wm = PLm, m = 1, 2, . . . , N , it fol-
lows that the last matrix inequality of (22) is fulfilled.
Taking the Schur complement of the remaining matrix
inequalities yields AT

cl (Πi)PAcl(Πi) − P − λΠi
I < 0.

Clearly, the λΠi (λΠi ≥ ciλmin) can be chosen larger than
||AT

cl (Πi)PAcl(Πi)− P ||2 such that the remaining inequali-
ties are satisfied for all Πi ∈ Π.

In general, there is no guarantee that negative λΠi can
be found, as this would imply the existence of a common
quadratic Lyapunov function for the inter-agent error. Estab-
lishing statements about the existence of a common quadratic
Lyapunov function for a switched linear system has been
proven to be difficult, see e.g. [17].

Instead, a different approach is pursued: Without imposing
λ < 0 the optimization problem (22) is guaranteed to
be feasible according to Theorem 4.1. Two cases can be
distinguished:

1) If all λΠi
are negative the closed-loop system is guar-

anteed to be ISS.
2) If at least one λΠi

is greater or equal to 0, additional
communication is needed. In the next section, IV-B,
a strategy is presented to bound the inter-agent error
and thus ensure input-to-state stability of the closed-
loop system. This can be seen as generalization of the
periodic reset strategy suggested in [1].

B. Boundedness of the Inter-Agent Error in Case λΠi
≥ 0

This paragraph discusses the case where at least one λΠi
is

greater or equal zero. It will be shown that an upper bound to
the quadratic Lyapunov candidate (20) allows for deriving a
periodic reset strategy as suggested in [1], which guarantees
input-to-state stability of the closed-loop system.

From (21), it can be deduced that

V (εji(k))− V (εji(k − 1)) ≤ (λI(k) + α)||εji(k − 1)||22

+

(
||PAcl(I(k))||22

α
+ ||P ||2

)
D2

with the constant α ∈ R, α > 0, and D an upper bound to
the disturbances dji(k), i.e. ||dji(k)||2 < D for all k. The
bound can be further relaxed by using λmax := maxΠi∈Π λΠi

and γmax := maxΠi∈Π ||PAcl(Πi)||2. Combined with the fact
that V (εji(k − 1)) ≥ σmin(P )||εji(k − 1)||22 this yields

V (εji(k))−V (εji(k−1)) ≤ λmax + α

σmin(P )
V (εji(k−1))

+

(
γ2

max

α
+ ||P ||2

)
D2,

where σmin(P ) denotes the minimum singular value of P .
Since there is a λΠi

≥ 0 and α > 0 the ratio λmax+α
σmin(P ) is

positive. For tightening the upper bound, the right hand side
can be minimized with respect to α, which results in

αmin(V ) =

√
σmin(P )

V
γ2

maxD > 0. (23)

Hence an estimate V̂ (k), with V̂ (k) ≥ V (εji(k)) can be
determined by

V̂ (k) =

(
1 +

λmax + αmin(V̂ (k−1))

σmin(P )

)
V̂ (k − 1)

+

(
γ2

max

αmin(V̂ (k−1))
+ ||P ||2

)
D2,

(24)

for k = 1, 2, . . . and V̂ (0) = 0 (assuming that the agents are
initialized with the same state estimate). Note that the matrix
P is obtained by solving (22) and allows to precalculate
σmin(P ), λmax and γmax.

As soon as V̂ exceeds the predefined threshold Vmax, i.e.
V̂ (k) > Vmax, a communication is triggered and the different
agents’ state estimates are set to a common value to reset
the inter-agent error implying εji(k) = 0 and V̂ (k) =
0. Clearly, this reset strategy bounds the inter-agent error
since Vmax ≥ V (k) ≥ σmin(P )||εji(k)||22 for all k. By the
strict feedforward structure of the closed-loop dynamics, this
implies input-to-state stability of the state x and the agents’
estimator errors ei, i = 1, 2, . . . , N . Note that there are
many potential different reset strategies such as a majority
vote, the mean, etc. Since the evolution of V̂ (k) is time-
independent the time instants kreseti where V̂ (kreseti) exceeds
Vmax, i = 1, 2, . . . can be precalculated. This amounts in a
periodic reset and extends the procedure presented in [1] by
providing a strategy for chosing the reset period.

Note that the estimate V̂ grows faster with a larger λmax.
Hence, minimizing the λΠi by solving (22) still reduces
the growth of V̂ and therefore the communication, although
λΠi

< 0 is not obtained for each Πi ∈ Π.



V. SIMULATION EXAMPLE

In this section we present a simulation example to illustrate
the distributed estimation and control framework introduced
in the previous sections. In particular, we introduce random
packet drops and different initial conditions causing the
agents’ state estimates to differ. To evaluate and compare
the performance, the simulation example is according to [1].

A. Simulation Model

In the following, the inverted pendulum system depicted
in Fig. 3 is considered, where ϕ1 and ϕ2 parametrize the in-
clination of the first and second arm, and θ the inclination of
the inverted pendulum. Taking the same physical parameters
as in [1] leads to the following linearized system dynamics:

x(k + 1) =


1.0007 0.0100 −0.0001 −0.0005 −0.0001 −0.0012
0.1492 1.0007 −0.0151 −0.0462 −0.0151 −0.1231

0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

x(k) +


0.0005 0.0012
0.0461 0.1230
0.0100 0

1 0
0 0.0100
0 1

u(k),

where xT = (θ, θ̇, ϕ1, ϕ̇1, ϕ2, ϕ̇2). The desired angular
velocities of the pendulum arms, i.e. ϕ̇1des and ϕ̇2des are
regarded as inputs. This can be realized by a substantially
faster inner control loop, which tracks the desired angular
rates such that ϕ̇i(k + 1) = ϕ̇ides(k), i = 1, 2, see [22] for
details.

The lower control unit is called agent 1 and the upper
agent 2. Agent 1 computes the desired angular velocity
u1 = ϕ̇1des and has access to noisy measurements ϕ1 + nϕ1 ,
ϕ̇1 +nϕ̇1 , and θ̇+nθ̇. Agent 2 computes the desired angular
velocity u2 = ϕ̇2des and measures ϕ2+nϕ2 and ϕ̇2+nϕ̇2 . The
disturbances nϕi

, nϕ̇i
, and nθ̇ are independent, zero mean

and uniformly distributed with variances σ2
ϕi

= (0.05 ◦)2,
σ2
ϕ̇i

= (0.1
◦
/s)2, and σ2

θ̇
= (0.24

◦
/s)2, i = 1, 2.

Note that the system is neither observable nor controllable
for each agent on its own. Nevertheless, it is controllable and
observable for both agents together.

The controller F is found via an LQ regulator approach
and is given by

F =

(
212.5872 55.0168 −19.3450 −2.5374 −23.5728 −6.7664
−84.9883 −22.0881 6.4894 1.0187 6.3579 2.7166

)
.

B. Design of Observer Gains

The vector c = (2, 1, 4, 0.5)T is used for weighting
the different eigenvalues λΠ1

, λΠ2
, . . . , λΠ4

defined in (22).
The eigenvalue λΠ1 describes the case where only agent 1
communicates its measurements (Π1 = {1}), λΠ2 the case
where only agent 2 communicates its measurements (Π2 =
{2}), λΠ3

the case where both agents communicate their
measurements (Π3 = {1, 2}), and λΠ4

the communication
free case (Π4 = {}). Since the open-loop system is unstable,
the case where no communication occurs is expected to
happen rarely and therefore the weighting c4 is chosen to be
the lowest. In case that both agents communicate, a drastic
reduction in the inter-agent error is desirable, which leads
to the comparably large value of c3 = 4. Additionally,
the case where agent 1 communicates its measurements is
expected to happen more frequently (agent 1 measures θ̇)
and therefore c1 is chosen to be higher than c2. The constant

ϕ2

ϕ1

θ

Fig. 3. Inverted pendulum model: The pendulum is stabilized by the relative
motion of its two arms.

λmin bounding the objective function from below is chosen as
λmin = −1. By solving the problem (22) the observer gains
L1 and L2 for agent 1 and 2 are obtained. The eigenvalues
λΠi

are found to be λΠ1
= −2, λΠ2

= −1, λΠ3
= −4

and λΠ4
= −0.5, which indicates an active lower bound

constraint λΠi ≥ λminci, i = 1, 2, . . . , 4. Since all λΠi are
negative the additional reset strategy described in Sec. IV-B
is not needed for guaranteeing input-to-state stability of the
closed-loop system.

C. Simulation Results

The communication thresholds δ1 and δ2 are set to δ1 =
8 · 10−3 and δ2 = 5 · 10−3. Each agent knows its initial
module inclination, but not the initial inclination of the pen-
dulum. Thus, the initial conditions are chosen to be x(0) =
(1 ◦, 0, 0.1 ◦, 0,−0.1 ◦, 0)T, x̂1(0) = (0, 0, 0.1 ◦, 0, 0, 0)T

and x̂2(0) = (0, 0, 0, 0,−0.1 ◦, 0)T. Moreover, a packet
drop4 is assumed to occur with a probability of 2%, i.e.
on average one in 50 measurements is lost. The system is
therefore subjected to disturbances coming from the non-
zero initial conditions, the non-zero initial inter-agent error,
the measurement noise, and the random packet drops. The
resulting closed-loop trajectory of the pendulum inclination
angle is depicted in Fig. 4 together with the agents’ esti-
mation errors and the estimated communication per agent.
The communication rates R1 and R2 are normalized such
that 1 corresponds to an agent communicating at every time
instant.

It can be observed that the system reaches steady state
after around 7 s. At steady state a total communication R =
1
2 (R1+R2) of approximately 19% is observed, together with
a root-mean-squared inclination angle error of 0.21 ◦.

Using the approach proposed by [1] the steady state
inclination error can be reduced to 0.06 ◦ and the total
communication to around 15% (without taking the permanent
communication of the input into account), depending on
the tuning of the Luenberger observer gains. There are two
reasons explaining the performance improvement: 1) In [1]
the exact input u is assumed to be known by both agents;
and 2) the synthesis problem (22) does not include any
performance measure since it accounts only for stability.
However, the observer gains obtained from the centralized

4Even though the disturbance di in (9) is not guaranteed to be bounded
when representing packet drops (see [1] for details), the following simulation
results demonstrate the effectiveness of the method also in this case.
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Fig. 4. Top left: time history of pendulum inclination angle θ(k) using a sampling time of 1ms. Top right: 2-norm of agent 1’s estimation error (after
smoothing with a 200-sample moving average filter). Bottom left: estimation of the communication R1 of agent 1 (solid) and R2 of agent 2 (dashed) via
a 200-sample moving average filter. Bottom right: 2-norm of the inter-agent estimation error (after smoothing with a 200-sample moving average filter).

synthesis approach according to [1] lead to an unstable inter-
agent error, which necessitates the use of a reset strategy.

VI. CONCLUSION

This paper presented a new approach to the synthesis of
stabilizing observer gains for a linear event-based control
system. In contrast to [1], the resulting control and estimation
algorithm is not required to have exact knowledge of the
input u. Additionally, it has been shown that under favorable
circumstances (negative λΠi ) the periodic reset of the agents’
estimates as proposed in [1] is not needed.

The framework can be extended to treat the case where
every agent continuously updates its state estimate with
its own measurements. This does not lead to additional
communication, and it can be shown to preserve closed-
loop stability. The observer gain synthesis is formulated as a
semidefinite program and therefore it can be easily combined
with a H2 or H∞ performance measure to improve the
closed-loop behavior. Also, relaxations of the design are
possible to reduce the computational complexity for a large
number of agents. A rigorous discussion of these aspects is
future work.
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