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~ Abstract—An event-based state estimation scenario is con- Process |y(k Sensor Estimator
sidered where a sensor sporadically transmits observations of a % ______ PN S
w(k) L &(k), p(k)

v—

scalar linear process to a remote estimator. The remote estima- !
tor is a time-varying Kalman filter. The triggering decision is %(P(k)) y
based on the estimation variance: the sensor runs a copy of the Transmit || Estimato
remote estimator and transmits a measurement if the associated Logic |p(k)|Z(k)p(k)

measurement prediction variance exceeds a tolerable threshold.
The resulting variance iteration is a new type of Riccati

equation with switching that corresponds to the availability or ~ Fig. 1.  Event-based state estimation problem. A sensor aser\inear
unavailability of a measurement and depends on the variance Process with state(k) and transmits measuremenjsk) sporadically over
at the previous step. We study asymptotic properties of the a network link to a remote estimator, which keeps track of theditmnal

: iterati d i ficul toti state meani(k) and variancep(k). The sensor implements a copy of the
variance iteration and, In particuiar, asymptolic COnvergence omoie estimator and uses its variapgé) to make the transmit decision.

to a periodic solution. Solid lines denote continuous flow of data (at every time stéghe
underlying discrete-time sampling) and dashed lines indidé&continuous
I. INTRODUCTION data flow. The communication links are assumed ideal (no delapaaket
We study the recursive equation drops).
2 a* ¢ p? (k)
plkt1) = a”p(k) + ¢ = v(p(k)) Aplk)+r @ data with each other over a broadcast network. Each agent’s
p(0) = po > 0, (2) objective is to maintain an estimate of the full system state
] o ) x(k) (for example, to feed its local controller). Since the
with the switching function state may not be observable from a local sensor alone,
1 if E(p(k) —p) > 6 commun?cat?on between _the ggents is required.r&juced
v(p(k)) := 0 otherwise (3) communication state estimatiome mean: the problem of
maintaining an estimate of the system state on each agent of

and parameterfy| > 1, ¢ # 0, ¢ > 0, 7 > 0, § > 0. The an NCS while, at the same time, seeking to reduce the load

equation represents the iteration of the prediction vagdor 0N the communication network.
the event-based remote state estimation problem depicted i Figure 3 explains an event-based strategy to address this
Fig. 1. The remote estimator is a time-varying Kalman filterproblem. The key idea is that each agent broadcasts its local
p(k) is the state prediction variance, and (3) is the triggeringensor measurement to the other agents drilys required
rule used by the sensor: a measurement is transmitted if, aindorder to meet a certain estimation performand® be
only if, the prediction variance grows too large. The dstailable to make this decision, each agent implements a copy of
of the derivation of (1) (including the explanation of thethe common estimator representing the common information
additional parametep) are deferred to Sec. Il. in the network. If the other agents’ estimate (represented
The main result of this paper is to prove the globaby the common estimator) of a particular measurement is
convergence of the iteration (1) to a periodic solution undealready “good enough,” it is not required to communicate thi
certain assumptions to be derived herein as well. To th®easurement. This scheme has been experimentally demon-
authors’ knowledge, the discrete-time Riccati-type iiera strated on the Balancing Cube, [1], to achieve significant
(1) has not been studied before. reduction in average communication rates, [2], [3].
Implementing a copy of the remote estimator on the sensor Different decision rules for considering an estimate “good
node to decide whether or not to transmit data as shown @mough” can be implemented in the transmit logic block. In
Fig. 1 makes sense, for example, when the process is [}, a constant threshold logic on the difference of the alctu
be monitored from a remote location, and communicatiomeasurement and its prediction by the common estimator
is expensive compared to local processing on the sens@.implemented. In [3], a measurement is broadcast if its
The problem considered herein is a special case of a mgueediction variance exceeds a tolerable bound. This is also
general problem that we are interested in. We consider tltke approach taken in this paper. If a transmission is triggje
networked control system (NCS) in Fig. 2, where multipleoy a condition on the estimation variance, we refer to
agents observe and act on a dynamic system, and shéies asvariance-based triggeringWhile [3] presents purely
experimental results, the theoretical basis of the appréac
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System A. Related work

|%| |_| |%| |A| |%| |A| Event-based strategies are a popular means of ensuring

A
T efficient use of the communication resource in NCS (see

Algorithm | [Algorithm Algorithm [4] and references therein). As opposed to traditional time
CstateEsimation || -State Estimatin ces “stte Etmaton triggered transmission of data, event-based approacies: tr
- Control - Control - Control mit data only when required to meet a certain specification
? ‘ ‘ of the control system (e.g. closed-loop stability, coniwol
v v v estimator performance). Event-based state estimatiob- pro

lems with a single sensor and a single estimator node similar
to Fig. 1 have been studied in [4]-[11], for example. Event-
Fig. 2. Networked control system. Multiple sensor (S) andiiztr (A) based state estimation probIem_s for distributed or mgktird

units are spatially distributed along a dynamic system. Eamtsar and SyStems have been looked at in [2], [3], [12].

actuator is associated with an algorithm block; and sereyator, and In most of the above-mentioned references for the single
algorithm together are denoted asagent The agents can share data Oversensor/single estimator case, the sensor node transmits to

a common bus. In order to feed its local controller, each agentitaias an . ; .
estimate of the full system state Each agent also decides when to shardhe remote estimator a local state estimate (obtained from

Common Bus

the estimate would have to be known. Since this variance is,
however, only known to the agent that generated the estimate
it would have to be communicated over the network as well,
Fig. 3. Event-based strategy to reduced communication stit@agion. hence, Increasing the network load.

The drawing represents a single agent (sensor (S), act{(/toalgorithm) In the above-mentioned references on event-based esti-
of Fig. 2. Each agent implements a copy of t@mmon estimatomwhich mation, an event is triggered by some condition on real-
operates on data that is received over the common bus. Siregegits have . . [ .
access to this data, the estimators are identical and représe common time data (measurement or state); that is, in a stochastic
information in the network. Data from the common estimator islissome ~ framework, data transmission is a random event. In contrast
transmit logic (event generator) to decide whether or not to put the locajhe variance-based trigger in (3) depends on the prediction
sensor data on the bus. This allows an efficient use of the coination . . . . .
resource: an agent’'s measurement is broadcast to all othetsam@y if the variance at the previous step. The resulting variancetitera
common estimate of this measurement is not already satisfachegstred, (1) is deterministic and depends on the problem data only. A
for example, by its variance). A second estimator, Il estimator may  condition on the variance to trigger sensor transmissiens i
be used to exploit all sensor data that is locally availabk, the data . . . . ; .

received from the busnd the local sensor data. Its estimate is used forConSIderEd in [13] in a slightly different framework. Thiere
feedback control. the authors consider two heterogeneous sensors: at every ti
step, one of these transmits its measurement to a remote

estimator, and a condition on the estimator variance is used
one in Fig. 2 when only two agents are considered, orf® decide which one. Whereas in that scenario, the average
of which observes the system through its local sensor af@mmunication rate is constant, we seek to reduce the
sporadically transmits data to the other, which estimated/erage sensor transmission rate, including the case where
the system state based on this information. The commdl® data is transmitted at a time step.
estimator then corresponds to the remote estimator in Fig. 1 The variance iteration of other Kalman filtering problems
Equation (1) is, in fact, the scalar version of the matriXtheir scalar version) can be recovered from (1) by reptacin
variance iteration derived in [3] for the distributed event(p(k)) in (1) with:

its local sensor data with its peers over the common bus. a Kalman filter on the sensor) rather than the raw mea-
surement. While this seems to be the method of choice for
Fhe sing!e agent case (the state estimate contaips Fhe fused
I information of all past measurements), communicating raw
¥ 3 measurements has a practical advantage for the multi-agent
TRANSMIT LOCAL case. For an agent to fuse another agent’s measurement with
S EsTimaTOR [ <Ol its local state estimate, it needs to know the variance of the
4 : 4 measurement conditioned on the state. This is usually known
COMMON in form of a sensor model. To optimally fuse another agent’s
EST"VLATOR state estimate, on the other hand, the variance associited w
v H

Common Bus

based estimation problem of Fig. 2 and 3. o (k) = 1. Classic Kalman filter for linear time-invariant
For the specific problem in [3], convergence of the estima-  systems, [14]. The filter has access to a measurement at
tion variance iteration to a periodic solution was obseneed every time step. Iteration (1) is called tkéscrete-time

numerical accuracy. This observation motivates the theore  Riccati equation[14]. It is well known that it converges
ical study of the convergence properties of the event-based to a positive fixed point for the assumed parameters.
state estimator with variance-based triggering in thisespap « (k) € {0,1} a periodic sequence. With periodic
To focus on the fundamental properties, this paper deals wit  measurement transmissions, the problem can be mod-
the scalar problem. eled as linear periodic system with periodically varying



¢(k) and r(k). The variance evolves according to thecollection of all measurementg(k) up to time k that are

discrete-time periodic Riccati equatiowhose conver- available at the remote estimator,

gence properties to periodic solutions are studied in -

[15]. The problem considered herein is different in that Y(k) =={y() | 1 < k,A() =1}, (7)

we do not assume a-priori a periodic transmit SeqUeNce, . e transmit functiof is defined as
o (k) € {0,1} a Bernoulli random process. Kalman fil-

tering with intermittent observations, [16]. The arrivhlo 1 if measuremeny(k) is transmitted

a measurement at the Kalman filter is subject to random (k) := (8)

data loss modeled as a Bernoulli process. Hep(k)
becomes a random variable. In [16], the authors showotice that, if the sequence of transmit decisions
there exists a critical value for the data loss probability{§(1)7 ...,7(k)} is known at timek, (7) is well defined.
below which the expected value pfk) is finite. We make precise later in this section how we decide if a
measurement is transmitted at tirhe

Under the above assumptions, the distribution of the state
x(k) conditioned on)(k) is Gaussian. The Kalman filter
Lel4] keeps track of the conditional mean and variance,

0 otherwise

B. Outline of this paper

Equation (1) is formally derived in Sec. Il. Section llI
illustrates the behavior of (1) with simulation examplekeT
asymptotic properties of (1) are studied in Sec. IV, and th

main result of this paper is derived (Theorem 2). Due to space #(klk—1) =E [x(k)\)}(kfl)] 9)

limitation, proofs of intermediate propositions have been - . ~

omitted and will be published elsewhere; they are available E(klk) = E[fc(k)‘y{k)] (10)

in [17]. The paper concludes with a discussion in Sec. V. p(klk—1) = Var[z(k)|Y(k—1)] (11)
p(k|k) = Var[z(k)|Y(k)], (12

Il. EVENT-BASED KALMAN FILTER

In this section, we derive (1) as the variance update ofhere E-|-] denotes the conditional expected value and
the event-based state estimator in Fig. 1 for a scalar line¥ar[-|-] the conditional variance. The filter equations are
stochastic process. A matrix version of this equation for a

vector system with multiple sensors is derived in [3]. Z(k[k=1) = a@(k—1k=1) (13)
Consider the scalar stochastic linear time-invariant@sec  p(k|k—1) = a* p(k—1|k—1) + ¢ (14)
z(k+1) = ax(k) +v(k) 4) K(k) = - cp(klk—1) (15)

y(k) = cax(k) + w(k), (5) Aplklk—1) +r
where k is the discrete-time indexz(k) represents the Z(k|k) = 2(klk—1) + V(k)K(k)(y(k)—cx(k|k—1()1)6)

process state, angl(k) its observation. The process noise
v(k), the measurement nois&k), and the initial state:(0)

are assumed mutually independent, Gaussian distributéd W{Ne denote the filter (13)—(17) as treduced communication
mean 0, 0,xp and varianceg > 0, » > 0, andp, > 0, Kalman filter

respectively. For the purpose of this paper, we consider the Let p(k) := p(k|k—1) denote the state prediction variance.

case of unstable dynamics, ije] > 1, which is the more . :

. . - It captures the uncertainty aboutk) given all measurements
challenging case, since communication of measurementsds to the previous time stelp-1. Similarly, Var[y(J)| 3 (k—
required for the estimation error variance to be bounded. F & P ’ Y. J

— 2 ; ; .
thermore, we assume that the system is detectable,#d). ul)] = cp(k) + 1 captures the uncertainty in predicting the

It is well known that the Kalman filter, [14], is the optimal measurement)(k). According to the idea outlined in the

state estimator for the process (4), (5) in that it keepsktraéntmducnon’ a measuremen(k) is transmitted and used to

. A Update the estimator if, and only if, its prediction varianc
of th?. conditional probability distribution Of. the staigk) exceeds a tolerable bound. Since the reduced communication
conditioned on all measurements up to tirhg Y(k) :=

{y(1),....y(k)}. To distinguish this Kalman filter from the Kalman filter cannot do better than the full communication

reduced communication filter derived below, it is denoteglter’ we use a threshold on the difference
as thefull communication Kalman filterUnder the above [y(k)|Y(k=1)]— lim Var[y(k)|Y(k—1)] = *(p(k) —p)
assumptions, the state prediction variance[¥&k)| Y (k—1)] ko0 (18)

converges tg > 0 which is the unique positive solution to for the transmit decision. Hence, we use the transmit rule
the discrete algebraic Riccati equation (DARE)

p(k[k) = p(klk=1) = 3(k) c K (k) p(k|k=1).  (17)

_ _ a’c?p? J(k) = v(p(k)) (19)
p=aptq— ot © _
cprr with v(p(k)) as in (3). We assumé > 0 henceforth; for
We write p = DARE(a, ¢, q, 7). 0 = 0, the full communication Kalman filter is recovered.

Next, we state the Kalman filter that estimatg#) based By combining equations (14), (15), (17), and (19), equa-
on a reduced set of measurements. D&t) denote the tion (1) is obtained.



IIl. | LLUSTRATIVE EXAMPLES

7.13} .
Figure 4(a) shows simulation resditef (1) for the fol- /\ /\ /\ /\ /\
lowing parameter values: —

Example 1l:a =12, c=q=r=1,0 =3, pp = p. %4.2' 1
As expected, the variancg(k) grows at times where no

[¢]

measurement is available. Once the threshold is exceeded, 2.26

measurement is transmittedl(p(k)) = 1) and the estimator

variance drops. The solution in Fig. 4(a) asymptotically . . . .

converges to a periodic solution with peridd = 3. 2 1r ’ : : :
Figures 4(b) and 4(c) illustrate that, for different values X ‘ } { { (

of § (all other parameters are the same as in Example 1) © 0

asymptotically periodic solutions with very different jmats 0 3 6 9 12 15
may be obtained. The period does not vary monotonically k
with 6. @0=3

IV. AsYMPTOTIC CONVERGENCE 4.09¢ 1
The asymptotic properties of (1) are studied in this
section. In particular, we derive conditions that guarante %
convergence to a periodic solution and give an algorithm
[ ~ ~ ~ ~N ~

to compute the period. The convergence proof is based or 1.98
the contraction mapping theorertalso known asBanach’s

fixed point theorein After some preliminaries in Sec. IV-A,

we use an illustrative example in Sec. IV-B to outline the _ 1[ ‘ X i [ X X t ‘ ‘ ‘ t

convergence proof, which then follows in Sec. IV-C to IV-E. =

o 2 0 :
A. Preliminaries :
. _ 0 5 10 15 20 25
Sinceq > 0 andr > 0, (1) and (3) can equivalently be
written as (b) 6 =0.2
a2 £a (k)2 17.66f ‘ ‘ ‘ ‘ ]
P+l _pp®) gy, (%) (20)
q q T a2y capk) g
rooq
~11.57
where we use i;’
1 if Xist |
1y — i |s. rue 21) aal
0 otherwise 2.36
for a more compact notation. By redefinipgk), ¢?, andd iF » : : :
asp(k)/q, ¢*q/r, and§/(c?q), respectively, we can assume =
without loss of generality thag = » = 1. Henceforth, we = 0

study the iteration ‘ ‘ ‘ ‘

0 19 38 57 76 95
k+1) = h(p(k)), 0) = po > 0, 22 k

p(k+1) = h(p(k)), p(0) =po > (22) © 5 oki6r

where the functiom: is defined as Fig. 4. Simulation results for different values of the th@lshparameter

h : [0,00) — [0, 00) 4. The top graph of each sub-figure shows the variance itegéfes(blue)
5 9 o and the transmit threshold + 6/c? (red). The bottom graph shows the
2 a~cp (23) corresponding transmit sequenggp(k)). All solutions are asymptotically
pr—=aptl—1,>545 2p+1 periodic with periodsN = 3,5, 19 from top to bottom.

with parameterga| > 1, ¢ # 0, § > 0; and withp =
DARE(a, ¢, 1,1). The graph ofi is shown in Fig. 5 together which represents the variance iteration of the full communi

with the graph of the function, cation Kalman filter. For the map being appliedn times,
g : [0,00) — [0, 00) we write h"™; that is, form € N,
2t p? 24) k+m) = h™(p(k)) = h(h(... (h(p(k))... 25
2 _atcp ( p(k+m) (p(k)) = h(h(...(h(p(k))...))), (25)
S —

0 o
IFiles to run the simulation are available at www.cube.etiidmwnloads. Whereh®(p(k)) = p(k).



B. lllustrative example and outline of the proof

We now illustrate, by means of Example 1, the main ideas
to show asymptotic periodicity of solutions to (22).
| The graph ofh for the parameters of Example 1 is shown
| in Fig. 6. Since there is no intersection with the identity
\ diagonalp = p, h has no fixed point, as expected. The graph
‘ of A3, which is depicted in Fig. 7, does, however, have three
1 intersections in[p;, p2) with the identity diagonal. Hence,
= h? has three fixed points in this interval corresponding to
the 3-cycle shown in Fig. 4(a).
. We illustrate next how one can use the contraction map-
0 PL p+s P2 ping theorem to prove thdt® has these three fixed points,

P and that they are (locally) attractive. This approach isthe

generalized in Sec. IV-C to IV-E.

Fig. 5. The functions: (blue) andyg (orange). The filled (unfilled) circles ~ Theorem 1 (Contraction Mapping Theorem, [19])et

indicate a closed (open) interval boundary. The dottedatiagrepresents HH be a norm forR™ and S a closed subset oR™.
the identity mapp = p. The intersection ofy with the identity diagonal

represents the solutiop to the DARE (6). The dashed box represents theAssumef : 5 — S is a contraction mapping: there is dn
set[p1, p2), which is invariant undeh. Forp > p+ 6, h(p) = g(p). 0 < L <1, such that|f(p) — f()|| < L||p—p| for all p,p

in S. Then f has a unique fixed point* in S. Furthermore,
if p(0) € S and we sep(k+1) = f(p(k)), then

h(p), 9(p)

Proposition 1: Let p; := h(p+6) andpy := a®(p+6)+1.

The following properties of. hold: I * Lk
. p(k) —p"| < p(1) =p(O)] (k=0).  (29)
_(_') h(lp1,p2)) C [p1,p2)- 1-L
(i) Vp € [0,00),3m € N: h™(p) € [p1,p2). Equation (29) implies thap(k) converges tg* ask — oo
(iii) & is injective on[py, p2). for any p(0) € S.
(iv) h is continuous and strictly monotonic increasing oo be able to apply Theorem 1 (with = 1, f = h3, and
[p1,p + &) and on[p + 4, ps]. -] = |-]), there are two key requirements:
(v) h is differentiable on(py,p + 6) and on(p + 4, p2). (i) a suitable closed sef that is invariant undeh? needs
For (i), we also say thdp:, p2) is aninvariant set underh. to be constructed, and

Proof: The pro(;)f_ can %e.found in [17]. . -I _ (i) R® needs to be a contraction mapping $n
We are interested In studying convergence of a solution As it shall be seen later, the discontinuities of the funttio

{p(0), (1), p(2),... } of (22) to periodic cycles, which can ;5 play a crucial role in the development. The functibh

be defined according to [18], as follows: h : A . )
N . as two discontinuities, which can be seen as follows:
Definition 1 (adapted from [18]):Let p* be in the do- + h(p) is continuous for allp € [py. pa) except atd; —

main of h. Thenp* is called an/N-periodic pointof (22)

e . . N .. P+ 9.
ititis a fixed point of 2™, that is, if o h%(p) = h(h(p)) is continuous ap if h is continuous
WY (p*) = p*. (26) atp and if 2 is continuous ah(p), [20]. Hence, points
The periodic orbit of*, {p*, h(p*), h2(p*), ..., BN =1 (p*)}, of discontinuity ared, (discontinuity of%); andd, €
is called anN-cyclg and N is called theperiod [p1,p2) such thatp + 6 = di = h(dy). Sinced, €
Definition 2: A solution to (22) is calledasymptotically dom(h ™), the inverseh ™" exists anddy = h™' (dy).
N-periodic if « Similarly, h3(p) = h(h*(p)) is continuous ap if h? is
lim ™Y (po) = p*, (27) continuous ap and if k is continuous at?(p). Points
m—00 of discontinuity ared; andd, (discontinuities ofh?);
wherep* is an N-periodic point of (22). andds € [p1,ps) such thatp + 0 = d; = h(ds) <

In subsequent sections, we derive conditions that guaante  ,~1(d4,) = d, = h(ds). But sinced, ¢ dom(h~1)
that a solution to (22) is asymptotically periodic. For this (cf. Fig. 6), such al; does not exist. Hencé,> has the
purpose, attention can be restricted to the intefwalp2), discontinuitiesd; and ds.
since by Proposition 1, (i) and (ii), every solution enters The giscontinuities!; andd. naturally subdividep, , p-)
[p1,p2) for somem and remains within for alk > m. in three disjoint subintervalsp:,p2) = I3 U I, U I; with
From Proposition 1, (|.||), the inverse df eX|st_s on the I3 := [p1,da), I := [dy,dy), and I} := [dy, ps). Figure 8
range ofh on [py, p;), which can be seen from Fig. 5 to bejstrates where one of the subintervals, is mapped by
h(lpr, p2)) = [p1, h(p2)) U [A(p1), p2). Hence, we define the eneated application df. Clearly, h3(1,) = h3([dy, p2)) C
inverseh~! as [d1,p2) = I1. Furthermore, sincé(p2) < d2 (cf. Fig. 6), the
Rt s py, h(p2)) U [h(p1), p2) — [p1,p2) (28) same property holds for the closure Bf that is, [d1, p2] is
y — h~(y) such thatu(h"1(y)) = y invariant underh?,

For the domain of,~!, we write donfh~1). R ([dy, p2]) C [d1, pol. (30)



P2 I ' N ]
h(Iy)¢o
O
. h3(Iy) : : *—o0———
2 4 P dy dy P2
« p

Fig. 8. Mapping of the interval; under repeated application @f On
the top line, the interval; = [d1,p2) is shown in red. This interval is
mapped toh(I1) = [h(d1), h(p2)) = [p1, h(p2)) (cf. Fig. 6), shown on
1p1 J d' D the second line from above. Notice that the obtained intésvsignificantly
2 1 shorter due to the slope @f being significantly less than one dd, p2)
P (cf. Fig. 6). The intervalsh?(I1) = h(h(I1)) and h3(I1) = h(h%(I1))
(third and fourth line from above) are obtained accordindlgtice that the
Fig. 6. The functionh for @ = 1.2, ¢ = 1, § = 3 on the domain interval length increases for the latter two mappings, siheeslope ofh
[p1,p2) = [2.20,8.13). The function has a discontinuity d@f = p+ 6 = is greater than one ofp1, d1). Still, after one cycle of three mappings, the
4.95. The slope of: is a2 on (p1, d1) and bounded by’ (d;) on (dy,pz).  resulting interval is contained in the original one, () C 1.

dp
p

P2
: From this, it follows (by the application of the mean value
—0 theorem, [20]) that for any closed interval C (d;,p2),
' the contraction mapping property in Theorem 1 holds with
- L = a*¢'(p+0) < 1. Even though the closed interviah, p,]
S p is not contained in(dy,p2), Iy := h3([d1,p2]) is contained
= a (see Fig. 8). Furthermord; is itself invariant underh?,
o~ ° which follows directly from (30),
p W3 (1) = B3 (B*([d1, p2])) € B ([dy,p2)) = . (33)
2
D1 & Theorem 1 thus ensures that there exists a unique fixed point
P d, h b2 in I;, and that every starting point ify converges to this
P fixed point. Furthermore, since
Fig. 7. The functionh?® for a = 1.2, ¢ = 1, § = 3 on the domain 3 —p3 3 -7
[p1,p2) = [2.20,8.13). The function has two discontinuities a = W () = h ([d1,p2)) Ch ([dl’pg]) I, (34)
P+0=495anddy = 2.74. the fixed point is attractive (undér®) for all points in the

original intervalI;.

For the intervals/, and I3, one can proceed similarly
and, hence, show that every point [y, p2) converges to
a fixed point ofh3. Furthermore, we know by Proposition 1,
(i) and (ii), that every solution to (22) ends up fipy, p2).
tTherefore, the solution to (22) for the considered exangple i
asymptotically 3-periodic for any initial valugy.

To treat the general case in the remainder of this section,
we proceed analogous to this example. In Sec. IV-C, we state
assumptions that guarantee the existenc& aflosed subin-
tervals in[py, p2) that are invariant unde” . In Sec. IV-D,

Notice thath([d;, p2]) andh?([dy, p2]) (the same intervals as
h(I) andh?(I;) in Fig. 8, but with closed right bounds) are
closed intervals contained ify and I, respectively. It can
be shown that, under?, they are invariant and attractive for
any point inf3 andI,, respectively. Hence, we can construc
closed sets invariant undéf (requirement (i)).

For requirement (ii), we focus again on the interval
Consider the derivative of* on (dy,p2). By the chain rule,
for p € (di1,p2),

d(h?) (p) = W (h2(p)) d(h?) () we show that:"V is a contraction mapping on these intervals,
d dp which then allows us (in Sec. IV-E) to apply Theorem 1
= 1'(h3(p)) - W (h(p)) - I (p), (31) to conclude that solutions to (22) are asymptoticaly
periodic.

whereh’ meansg—’;. Similar to the argumentation in Fig. 8,
one can see thai((dy,p2)) C (p1,ds) and h?((dy,pz)) €  C. Invariant subintervals
h((p1,d2)) € (d2,d1). From Fig. 6, it can be seen that The construction of N closed subintervals ofp;,ps)
W (p) = a® for all p € (p1,d2) U (d2,d;) and thath/(p) < that are invariant undeh? proceeds in two steps. First,
g'(dy) for all p € (dy,p2). Therefore, we gétfrom (31), for half-closed intervalsl; are generated that coveép:,p:)
p € (di,p2), and possess the sought invariance property. Second, closed

(%) s s " intervals I; C I; are constructed that inherit the invariance

i (p) <a®-a”-g'(d) =a"g'(p+0)=0.084. (32) property from their supersets.
Motivated by the example of the previous subsection, the

2The computation is available at www.cube.ethz.ch/dowrdoad intervals I; are obtained by splitting ufp:,p2) through a




sequence of point§ds,ds, ...}, d; € [p1,p2), which rep- [ I 11 I X I X L, )

resent discontinuities of and are obtained by iteratively [ o ‘ ) » R
applying =" o odsdi di dy p
Algorithm 1:
di=p+9

. _ Fig. 9. The left-closed, right-open subintervals= {I, I2, I3, I4,I5}
1 K K
while d; € dom(h ) generated by the poin®s = {d1,d2,ds,ds} cover the intervalp:, p2).

di+1 = hil(dl)

increment:

end while (i) h(int(Iy)) C int(Iy—_1), h(int(In—1)) C int(In_2),

N:=i+1 ..., h(int(I3)) Cint(1y), andh(int(Iy)) C int(1y).
If there exists anm € N such thatd,, ¢ domh~'), Algo- Proof: The proof can be found in [17]. u
rithm 1 terminates, and the obtained sequefiteds, . .. } is Corollary 1: The following statements hold:
finite. For all problems of an exhaustive search that we havei) h™(I;) C I; VI; € T.
conducted, this has actually been the case. A potentiaf pro¢i) A" (int(1;)) C int(I;) VI; € Z.
that the algorithm terminates in general is, however, still  Proof: (i) and (ii) follow directly from Proposition 4
open. For the purpose of this paper, we assume hencefoehd the fact: for two set$§;, So and a functionf, S; C
that it does. Sy = f(S1) C f(S2). [ |

Assumption 1:Algorithm 1 terminates. The intervalsZ cover the whole domain of interelst , p2),

The assumption is essentially checked by running Algaand they are invariant undeN times application ofh.
rithm 1; if the algorithm terminates, the assumption is trueHowever, in order to be able to apply Theorem 1, closed

Proposition 2: Let D; := {di,...,d;}. The following intervals are required. The proposition below states that
statements hold: subintervalsI; C I, exist that are invariant undeh?
(i) di ¢ [h(p2),h(p1)), Vi < N—1, and closed. For stating the proposition, another technical
dy_1 € [h(p2), h(p1)). assumption is required:
(i) Ah*is continuous orpi,ps) \ D;, Vi < N—1, Assumption 2:h(pz) < dy-1.
hY is continuous orpy, p2) \ Dy _1. Notice that by Proposition 2, (i), the weaker condition
(i) Vd;,d; € Dn_1 with i # j, d; # d;. h(p2) < dn-1 is already guaranteed. 3
Proof: The proof can be found in [17]. m _Proposition 5: There exists a collection of intervals =
The pointsDy_; divide the intervallpy, po) in N subin-  {/1,12,..., Iy} such that for ali € {1,..., N} the follow-
tervals Z := {Iy,...,Iy} as illustrated in Fig. 9. The ing statements hold:

intervals are named such that hasd; as a lower bound (i) I:i is closed.
for i < N —1, andIy has the lower boung;. A formal (i) I; C int(/;) C I;.
definition of the intervals is given next. L&t : {1,...,N— (i) »"([;) C I;.
1} — {1,...,N—1} be a permutation of thd;’s such that (iv) R*N (L) C I,.
. Proof: The proof can be found in [17]. [ ]
dugy < dugipry, Vi€ {l,...,N -2} (35)  The details of how the interva can be actually constructed
Furthermore, let andi be the indices of the smallest andare given in the proof.

greatestd;, i.e. II(1) = i andII(N —1) = i. Then define D. Contraction mapping

Ii i= [di, dryn-10y41y) Vi< N —1,4 £4q (36) In this section, we show that" is a contraction map-

I = [d;, po) (37) Ping (i.e. it has a Lipschitz constant strictly less than,one

In = [py, dy) (38) cf. Theorem 1) on each of the intervals To this end, we

N = [p1ydy), first derive an upper bound less than one on the derivative
that is, intervall; hasd; as a lower bound (closed) and theof 2™¥ on the interior of the intervalg.
next bigger element fromD,_; as an upper bound (open) Proposition 6: R™ is differentiable on all open intervals
(except for the intervals at the boundariesjof, p,)). Since int(Z;), I; € Z. Furthermore, there exists dn< 1 such that

each interval is uniquely specified from (36)—(38) by either d(hN)
its lower or its upper bound, we sometimes omit either one ‘ J (p)| <L Vpeint(l;),vl; € T.
of them and writdd, ) or [x, d). For the interior (the largest P )
Proof: The proof can be found in [17]. |

contained open interval) af;, we write in{I;).
Proposition 3: All intervals I; € Z are mutually disjoint
and non-empty.
Proof: The proof can be found in [17]. [ ] BN (p) —hN(P)| < Llp—p| Vp.pel;, VI €.
Proposition 4: The following statements hold: Proof: Take anyp,p € I; with 5 < p without loss of
(i) h(In) CIn_1,h(IN_1) CIN_2, ..., h(I3) C I;,and generality. By Proposition 2, (ii), and 5, (ii);" is continuous
h(I1) C Iy. on [p,p] and, by Proposition &7 is differentiable on(p, p).

Corollary 2: rY is a contraction mapping on any interval
of Z; that is, there exists ah < 1 such that



The claim then follows from the mean value theorem, [20].
(A more detailed proof can be found in [17].) [ ]

E. Main result

Equipped with the results of the previous two subsections,
the main result of this paper can be stated: [
Theorem 2:Under Assumptions 1 and 2, the solution to
(22) is asymptoticallyN-periodic for any initial condition [2]

po = 0.
Proof: By Proposition 1, (i), it follows that there exists 3]
anm; € N such that

h" N (po) € [p1,p2)- (39) '
Since the disjoint intervalg cover [py,p2), there exists a H
unique: € {1,..., N} such that
RN (po) € . “0)
By Proposition 5, (iv),
WMt IN (pg) € I, 41) e
From Proposition 5, (i) and (iii), Corollary 2, and Theo-
rem 1, it follows that there exists a unique fixed pgiftof [7]
N (hence, anN-periodic point of (22)) inZ; and that, for
all p e I;, v [8]
lim A" (p) = p;. (42)
m— o0
In particular, forp = h(™1+2N (p,) and by (41), -
lim th (h(77L1+2)N(p0)) = lim h(m1+2+m)N(p0)
m—roo m—r o0
= lim "V(po) = p;. (43) U9
m— 00
[ |
V. DISCUSSION (11]

Two assumptions are made to state the main result of this
paper in Theorem 2. The question whether the assumptions
can be removed is subject to future study. As is, the streng?hz]
of the result is that it essentially offers a sufficiency test
for periodicity (if Algorithm 1 terminates, convergence to

C . ) . 13]
a periodic solution with a known period is guaranteed) aLs
an alternative to simulating (1) and having to interpret the
result.

This paper deals with the scalar version of the varianc[t-lz4]
iteration of the event-based state estimator with variance
based triggering. Whether the convergence result genesali1°]
to the multi-sensor case (as suggested by the observations i
[3]) is an open question. [16]

A periodic solution to the event-based state estimation
problem with variance-based triggering allows the recpver
of a time-based transmit schedule: the periodic transmnii7]
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