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T
he balancing cube is a dynamic sculpture 
that can balance autonomously on any of 
its edges or corners (see Figures 1–4). When 
standing on a corner, the cube represents a 
three-dimensional (3-D) inverted pendulum 

with multiple actuation, sensing, and control units that 
are interconnected over a communication network. The 
main structural components are the cube body (a rigid alumi-
num structure with a cubic shape) and six identical rotating 
arms located on each of the cube’s inner faces. The rotating arms 
are self-contained units carrying sensors, actuation, a computer, 
and a battery. Due to their modular design, these units are referred 
to as modules. As they rotate, they shift the overall center of mass of 
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the system, exert forces on the cube structure, and can, as a 
result, influence the cube’s motion. The modules constitute 
the agents in the distributed and networked control sys-
tem; their joint objective is the stabilization of the cube. A 
video of the cube can be found on the project Web site [1].

Inverted pendulum systems are popular in controls edu-
cation and research; see, for example, [2]–[4] and references 
therein. In the most basic version, an inverted pendulum is a 
point mass on a massless link that is connected to a base 
(ground or moving platform) through a revolute joint with 
one degree of freedom (DOF, see Table 1 for acronyms). More 
generally, if the pendulum is considered as a general rigid 
body with three rotational degrees of freedom at its pivot, 
the pendulum is referred to as a 3-D pendulum [2]. A defin-
ing characteristic of all inverted pendulums is that the pen-
dulum is pointing upward as seen from the pivot (that is, in 
opposite direction to the gravity vector). The corresponding 
equilibrium is hence unstable, which makes the system 
interesting for controls researchers and educators: to bal-
ance, the pendulum needs active stabilization by some actu-
ation mechanism, such as actuated masses or a moving base.

Used as demonstrators for controls research since the 
1950s (see [4] and references therein), inverted pendulum 
systems have remained popular experiments (simulation or 
physical) in various current research areas, such as learning 
control [5]–[7], networked control [8]–[12], adaptive control 
[13]–[15], model predictive control [8], [16], [17], decentralized 
control [18]–[20], and different branches of nonlinear control 
[21]–[28]. Common to most inverted pendulum systems is 
that the control algorithms are implemented on a single,  
central processing unit. In contrast, the balancing cube is  
stabilized by the joint action of six agents (the modules) with 
independent processing units, and the implementation of 
the feedback control system is distributed among the agents. 
The dynamics of the individual agents are coupled through 
the cube’s rigid body.

Because data is exchanged between the agents over a digi-
tal communication network, the balancing cube qualifies as a 
networked control system, [29]. Other experimental test beds that 
have been developed to study distributed control and/or con-
trol of multiple agents over networks include modular robot 
systems [30], [31], a two-axis contouring system [32], a system 
for handling materials [33], a formation flight experiment [34], 
and multivehicle systems of various types [31], [35]–[37].

The cube is a 3-D inverted pendulum when balancing on 
one of its corners (denoted as corner balancing). When balanc-
ing on one of its edges (edge balancing) as shown in Figures 3 
and 4, it becomes a 1-D inverted pendulum. Moreover, with 
the six modules on its inner faces, the cube is a multibody 
system and may therefore be qualified as a 1-D/3-D multi-
body inverted pendulum [2]. For both edge and corner  
balancing, different equilibrium configurations and, hence, 
different dynamics can be obtained by varying the nominal 
angle of the modules. Since the multibody system has fewer 
inputs than DOFs (each of the module DOFs is actuated, the 

cube body DOFs are not), it is an underactuated mechanical 
system [38]. Overall, the system combines the challenges of 
nonlinear unstable dynamics with distributed control and 
networked communication, making it a rich platform for 
research in dynamics and control.

Enabled by its control system, the balancing cube is a 
dynamic sculpture: the cube body is kept in balance through 
the slight corrective movements of the six modules. No external 
system is required for balancing. Set on one of its corners, the 
cube can balance as long as its batteries last (four or more hours) 

figure 1 the cube balancing on one of its corners. the cube bal-
ances through the action of six rotating arms on the cube’s inner 
faces. the diagram in figure 2 is helpful for visualizing why the 
sculpture is called a cube: its tips are simply the corners of a cube. 
alternative terms for this shape are the star tetrahedron and, less 
commonly used, the stellated octahedron. self-contained with 
onboard sensing, actuation, computation, and communication, 
the rotating arms are called modules due to their modular design. 
the cube’s height from tip to tip is 2.08 m.

tAble 1 Acronyms used in this article.

Acronym meaning
can controller area network
cg center of gravity
dc Direct current
Dof Degree of freedom
imc intermodule communication
imu inertial measurement unit
leD light-emitting diode
lQr linear-quadratic regulator
mems microelectromechanical system
rms root mean square
sbc single-board computer
sPi serial peripheral interface
Wlan Wireless local area network
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or until someone pushes it over. With many peoples’ under-
standing of balancing, it makes an ideal device for communi-
cating key concepts of control engineering such as stability, 
feedback control, and cooperation to the general public.

The balancing cube was built at the Institute for Dynamic 
Systems and Control (IDSC) at ETH Zurich and was completed 
in 2009. Since then, it has been demonstrated at public exhibi-
tions and at an international control conference (see “Balanc-
ing Cube on Tour”). To the best of the authors’ knowledge, the 
cube presented in this article is the only cube to date that can 
balance autonomously on a corner. Another cube, which can 
balance on a fixed edge, is sold by Quanser Inc. [39]. Quanser’s 
cube uses a single actuation mechanism to stabilize the cube 
on its edge.

This article explains the design, modeling, and control 
of the balancing cube and demonstrates its balancing  
performance with experimental data. For the purpose of 
this article, all sensor data is exchanged between the agents. 
This way, the design of the control system can be posed as 
a centralized problem, which is addressed by separately 
designing a state estimator and a state-feedback controller. 
The resulting control and estimation algorithms are imple-
mented in a distributed fashion; that is, they are running 

Balancing Cube on Tour

S ince its completion in fall 2009, the cube has been exhib-

ited  at public events such as the european researchers’ 

night in zurich, switzerland, [s1], and the festival della sci-

enza in genoa, italy, [s2]. more recently, it made an appear-

ance at the triennial ifac World congress in milan, italy, [s3], 

as part of the interactive presentation of [40] (see figure s1).

a large cube balancing on a corner in a public place is an 

unusual sight and tends to attract a good deal of interest. as 

passersby stop to push the cube and test its ability to maintain 

equilibrium, they engage in a unique opportunity to learn about 

control engineering and its limitations.
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figure S1 the balancing cube at the 2011 ifac World  
congress in milan, italy. the cube was shown in one of the 
interactive sessions.

figure 2 corner balancing. the diagram visualizes the cubic 
shape and the six modules. it shows the cube in the same orienta-
tion as in figure 1: the cube stands on a corner, and all modules 
are pointing down. Due to their position on the cube body, two 
types of modules are distinguished: the bottom modules and the 
top modules. the top modules are less effective for balancing the 
sculpture, as explained later in “Why are the top modules used 
less?”

Enabled by its control system, the balancing cube is a dynamic sculpture:  

the cube body is kept in balance through the slight corrective  

movements of the six modules.
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on all six agents in parallel with no hierarchical distinction 
among the agents. The full communication case presented 
herein serves as the baseline for studies with constrained 
or reduced communication. In [40] and [41], two approaches 
are presented for the problem of state estimation and stabi-
lization of the cube with reduced communication.

Whereas the state-feedback controller is designed using 
standard linear-quadratic regulator (LQR) design techniques, 
the state estimator is tailored to the specific problem. It exploits 
the facts that the cube has only rotational DOFs, and that  
measurements from multiple inertial sensors are available, to 
generate an estimate of the cube’s tilt that is independent of 
the rigid body dynamics. In particular, the estimator provides 
a tilt estimate for whatever motion of the cube (slow or fast), 
and no assumption on near equilibrium configuration is 
made. The estimation algorithm only requires geometric 
system knowledge, namely the sensor locations on the cube. 
Since the algorithm does not rely on a dynamic system model, 
it is inherently robust to modeling errors or changes in the 
system (for example, in the mass or module configuration). 
The developed tilt estimation algorithm is applicable to any 
rigid body with only rotational degrees of freedom that is 
equipped with multiple inertial sensors.

This article focuses on the concepts and tools that were 
used to build and control the cube. The models that are pre-
sented herein include sensor models capturing the nonlinear 
dependency of the measurements on the system states (used 
for the state estimator design) and a linear model of the system 
dynamics (used for the design of the linear state-feedback 
controller). Nonlinear dynamic models and nonlinear con-
trollers for similar 3-D pendulum systems (but with different 
actuation mechanisms) can be found in [21]–[24], for example.

DESIGN
In this section, the hardware design of the balancing cube’s two 
key components is discussed: the cube body and the modules.

Cube Body
The cube body is formed by six sheet metal constructions 
(one for each face), and eight corner parts (to connect the 

(a)

(b)

figure 5 Detailed views of the cube’s rigid body. the cube body has 
six faces and eight corners. the faces are formed by an X-shaped 
welded aluminum construction (a). three adjacent faces join at right 
angles at one of the eight identical corner parts (b).

figure 3 the cube balancing on one of its edges. When the cube 
body is placed on two of its tips, it has only one rotational degree 
of freedom left. this is called edge balancing (see figure 4).

figure 4 edge balancing. the cube’s orientation is the same as  
in figure 3: the cube stands on an edge, the modules on the front 
and back face are pointing down, and the bottom and top modules 
are rotated away from the downward position.
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faces); see Figure 5. Each of the cube’s faces is an X-shaped 
welded construction fabricated from 1.5-mm sheet metal. 
The particular shape provides support for the modules, 
which are mounted in a square slot in the center of each face. 
The cube’s corners are CNC-machined aluminum parts.  
On each corner part, the three adjacent faces are attached at 
right angles. The result is a single rigid body in the shape of 
a cube with an edge length of 1.2 m. The modular construc-
tion of the cube body allows for easy disassembly and  
transportation.

The total mass of the cube body (without the modules) 
is 14 kg and represents a trade-off between weight and 
structural integrity. On the one hand, the structure must 
be light enough for the modules to manipulate the cube’s 
overall center of gravity (CG). On the other hand, the 
structure must be strong enough to support the modules 
and to withstand repeated falls. The three principal 
moments of inertia of the cube body are roughly 5 kgm2 
(each of the principal axes goes through the center of two 
opposing cube faces).

Modules
The six modules carry the system’s mechanical and electrical 
system components. At the same time, they constitute the 
actuation mechanisms that allow the cube body to balance. 
One of the cube’s modules is shown in Figure 6. Each module 
is composed of two parts: 1) a square-shaped component 
that is fixed to the cube’s rigid body and 2) a pie-shaped, 
eccentrically mounted “arm” that rotates relative to the cube 
body. Because of its motion relative to the rigid body, the 
former is called the nonmoving part and the latter the moving 
part of the module.

The cube is actuated by the rotating arms through:  
1) gravitational moments caused by their displacement and 
2) reaction moments caused by their acceleration or decel-
eration. Other actuation mechanisms are conceivable: in [2]
and [21] for example, reaction wheels, proof masses, and 
fans are discussed as actuators to control a 3-D pendulum. 

Rotating arms were chosen for the balancing cube mostly 
for aesthetic reasons.

nonmoving Part
The nonmoving part connects the module’s moving part to 
the cube body. It also houses inertial sensors and a user 
interface; see Figure 7. The nonmoving part is rigidly 
mounted to the center of the cube’s face so that the user 
interface faces outward. The nonmoving part has a mass of 
about 1.2 kg. The six nonmoving parts, together with the 
cube body, constitute one rigid body that must be balanced 
through the action of the moving parts.

The nonmoving part houses an inertial measurement 
unit (IMU) (Analog Devices, ADIS16350) with triaxis accel-
erometer and triaxis rate gyroscope. A lowpass filter 
onboard the IMU results in accelerometer and gyro noise 
standard deviations of .0 04accv =  m/s2 and .0 0042gyrov =  
rad/s, respectively. From the IMU measurements, the tilt of 
the rigid body and its rate of change are estimated as 
described in the section “State Estimation.”

The user interface consists of two LEDs and two push-
buttons. Located on each face of the cube, the user inter-
faces are used to set the state of the system (for example, 
calibration mode or balance mode) and to turn the system 
on and off.

Connectors on two sides of the nonmoving part (see  
Figure 7) connect all modules through wires running along the 

Connection
to Other
Modules

User
Interface

figure 7 the module’s nonmoving part. the user interface has 
two buttons and two leDs indicating the status of the system. 
cables running along the cube structure (not shown) connect the 
nonmoving parts and allow both the exchange of data and the 
synchronization of the power circuits. the inertial measurement 
unit observing the cube motion sits inside the nonmoving part (not 
shown).

Nonmoving
Part

Moving
Part

figure 6 a module. each module consists of a nonmoving part, 
which is rigidly mounted to the cube body, and a moving part (the 
pie-shaped arm), which rotates relative to the nonmoving part.
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cube structure. One set of wires connects the modules’ power 
circuits so that they can all be turned on/off at once by pressing 
a button on any module. A second set of wires forms the data 
network, allowing communication between the modules.

moving Part
The motion of the cube body is influenced by actuating 
the moving part of the modules. In addition to the actua-
tion mechanism, the moving part carries an absolute 
encoder, a computer, and a battery. All components are 
shown in Figure 8. The moving part has a total mass of 
roughly 3.7 kg, however additional weights of up to 1.9 kg 
can be added to increase control authority. For the results 
presented in this article, the moving parts of the bottom 
modules (see Figure 2) are equipped with an extra mass of 
1.9 kg each.

The frame of the moving part is made of sheet metal. A 
removable cover of semitransparent plastic protects the 
system components from dirt. Machined aluminum parts 
attach to the sheet metal frame and hold the actuation 
mechanism, which consists of a 60-W brushless dc motor 
with a planetary gear head (reduction 1:103) to drive the 
pinion of a bevel gear (reduction 1:3). The bevel gear is con-
nected to the nonmoving part of the module and hence the 
cube body. The motor therefore rotates the moving part 
relative to the cube. A clutch is used in the drive train to 
protect the motor from mechanical damage (such as when 
the cube falls) and to protect users if they are unintention-
ally hit by a rotating module.

The dc motor and the gear head are part of a compact 
drive unit (Maxon, MCD EPOS 60 W) that also includes a 
motor shaft encoder and a digital position and velocity con-
trol unit. In normal operation, the control unit is used in 
velocity mode to control the motor shaft velocity and, hence 
the angular velocity of the module.

The motor receives commands from a single-board com-
puter (SBC) over a dedicated controller area network 
(CAN). Through the same interface, the SBC can also read 
out motor data, such as the shaft velocity or the motor cur-
rent. The SBC (embeddedARM, TS-7260) has a 200-MHz 
ARM9 processor and consumes fewer than 1 W of power. 
In addition to the motor, it interfaces with all local sensors, 
the local user interface, and all other SBCs.

An absolute encoder (Hengstler, AC 36) with 12-bit reso-
lution is attached to the module’s axis of rotation and hence 
allows for absolute positioning of the module’s moving 
part relative to its nonmoving part. It is connected to the 
SBC’s serial peripheral interface (SPI).

The wires connecting the components on the nonmov-
ing part to the SBC are routed through a slip ring (Moog, 
AC6846). The IMU is connected to the SBC over SPI.  
The SBCs are connected with each other over a CAN sepa-
rate from the CAN connecting the motor. The CAN used 
for the intermodule communication (IMC) is a broadcast net-
work operating at a data rate of 500 kB/s. The network 

allows the reliable exchange of all absolute encoder and 
IMU measurements between all modules every 10 ms. 

The SBC handles the IMC and runs the estimation and 
control algorithms that enable the cube to balance.  
For programming and monitoring purposes, each SBC also 
has a wireless local area network (WLAN) module that 
allows for a connection to an external computer. A Linux 
operating system on the SBC allows easy handling of data 
and external access.

All components on the module are powered by a  
six-cell lithium polymer battery (FlightPower, EVO 20 
3700 mAh 22.2 V). Customized electronics manage each  
module’s power locally, including safety shut-off. Each  
module’s battery voltage is additionally monitored by the 

Absolute
Encoder

Clutch

Drive
Unit

Single-Board
Computer

Battery

Bevel Gear

figure 8 system components on the moving part of a module. 
the torque produced by the dc motor of the drive unit is applied 
between moving part and nonmoving part through the bevel gear. 
the clutch in the drive train protects the motor from mechanical 
damage. the absolute encoder measures the angle of the moving 
part relative to its mounting. all sensors are read by the single-
board computer, which issues commands to the drive unit. the 
electronic connection to the components on the nonmoving part is 
through a slip ring (not shown). the module is powered by the 
lithium polymer battery.
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SBC through its analog input. When fully charged, the 
cube can balance on one of its corners for more than four 
hours. The batteries can be charged through a connector 
on one side of the moving part.

OpERATION
The usual operation of the system is illustrated in Figure 9. 
First, a human operator lifts the cube and brings it near the 
desired equilibrium. The cube recognizes its balancing 
mode, that is, which edge or corner it is standing on, and 

rotates its modules to the appropriate starting configuration. 
After a short calibration phase, the cube starts to balance 
autonomously. If the cube falls, for example, after it was 
pushed too hard, the operation cycle—lifting the cube, hold-
ing near equilibrium, balancing until disturbed—may be 
repeated.

The balancing cube is a standalone device (without exter-
nal systems) that can operate anywhere there is solid ground. 
To lower the impact on the structure when the cube falls 
(such as when the batteries run low or a viewer pushes the 
structure too hard), the cube is usually balanced inside a 
foam ring. The complete setup is shown in Figure 9.

In normal operation mode, the operator controls the 
cube through the dedicated user interfaces on the cube’s 
faces or by guiding or pushing the cube body (such as 
during the setup phase). The system uses its inertial sen-
sors to respond. An external computer can be used for 
monitoring real-time data sent over WLAN.

MODELING
This section presents the models that are used in later sec-
tions for the design of the state estimation and control  
algorithms.

Linear dynamic models have proven sufficient for 
designing controllers that can stabilize the cube about an 
equilibrium. The system’s nonlinear equations of motion 
are therefore omitted. Nonlinear dynamic models for sim-
ilar 3-D pendulum systems (with more straightforward 
actuation mechanisms than the rotating arms on the cube) 
are discussed in [2] and [21]–[24]. The multibody system of 
the cube is complicated enough so that it is arguable how 
to best represent it in terms of being comprehensible, 
manageable, and not error-prone—as a system of nonlin-
ear differential equations or as a computer-based sym-
bolic model, for example. Herein, a 3-D multibody model 
in Matlab/Simulink is presented, which is used for non-
linear simulations and to extract linearized dynamic 
models. For a 1-D abstraction of the cube (an inverted pen-
dulum being balanced by a single module, presented later 
in “Why Are the Top Modules Used Less?”), the modeling 
procedure was verified by comparing the computer-based 
models to the analytically derived equations of motion.

The design of the global and nonlinear state estimator 
does not rely on the linear dynamics model; in fact, it 
does not rely on any dynamics model. The sensor models 
that are the basis of the state-estimator design are alge-
braic equations expressing the sensor measurements as a 
(nonlinear) function of the system states. To state these 
sensor models, only geometric information about the 
system (namely the sensor locations on the cube body)  
is required.

Multibody System
The balancing cube is a multibody system, with the cube 
body and the modules as rigid bodies. The cube body and 

(a)

(b)

(c)

figure 9 operation of the balancing cube. this photo sequence 
illustrates a typical operation sequence: (a) lifting the cube, (b) 
holding near equilibrium, and finally (c) balancing autonomously.
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the nonmoving parts of the modules are treated as a 
single rigid body, which stands with either one or two of 
its tips in contact with the ground. The modules’ moving 
parts are connected to the cube body through revolute 
joints. Because of its large mass, it can be assumed that 
the supporting points of the cube body do not slip and 
that the cube, therefore, does not experience any transla-
tional motion. The support of the rigid body is hence 
modeled as a ball joint with three rotational DOFs for the 
case of corner balancing. When the cube balances on its 
edge, the second ground contact constrains two rota-
tional DOFs. Hence the cube support is modeled as a 
revolute joint with one rotational DOF.

The cube’s body is subject to gravity and moments gen-
erated by the actuation mechanisms (the rotating arms). 
The latter include gravitational moments due to displace-
ment of the eccentric moving parts and reaction moments 
from accelerating or decelerating the arms. Centripetal 
forces from the rotation of the arms are negligible because 
of low angular rates in typical operation.

The coordinate frames shown in Figure 10 are used to 
describe the orientation of the cube: Ot  denotes the inertial 
frame of reference, and Bt  denotes the cube body-fixed coor-
dinate frame. The origin of Bt  lies on the cube’s balancing 
corner and its axes are along the cube’s edges as depicted in 
Figure 10. The origins of frames Ot  and Bt  coincide.

The rotation between the inertial frame Ot  and the cube 
frame Bt  is expressed by the rotation matrix SB

O . For all rota-
tion matrices, the notation from [42] is adopted, where the 
matrix SB

O  describes the rotation of Bt  relative to Ot , and a 
vector quantity y  given in frame ,B RB 3!yt , is expressed in 
frame Ot  by .v S vO

B
O B=

In this article, the attitude of the rigid body is represented 
by Z-Y-X-Euler angles (yaw, pitch, roll) such that (see [42])
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where ,a b , and c  are the yaw, pitch, and roll Euler angles, 
respectively. Notice that the yaw angle a  (capturing rota-
tions about the gravity axis) is irrelevant for balancing since 

gravity does not excite any yaw motion. Therefore, the yaw 
angle is not part of the system state that is considered later 
for the controller and estimator design. Because yaw repre-
sents a DOF of the rigid body, it is introduced here nonethe-
less. The particular choice of the Euler angle order (Z-Y-X) 
will result in the yaw angle naturally dropping out in the 
derivation of the state estimator later. The pair of pitch and 
roll angle ( , )b c  is denoted the tilt of the rigid body. When the 
cube balances on its edge, the body Y-axis is the axis of rota-
tion; that is, the rotation angle is b , and 0c = .

The modules’ rotation vectors are orthogonal to the  
corresponding cube face and point to the cube’s center. The 
angle i{  is used to denote the rotation angle of module i 
relative to the cube body. The zero angles of i{  are shown 
in Figure 10. The full configuration of the multibody system 
is described by the generalized coordinates

 ( , , , , , , , , ) .q 1 2 3 4 5 6{ { { { { { a b c=  (2)

XO

{4
{5

{6

{1{2{3 ZO

ZB

YB

XB

figure 10 coordinate frame definitions and zero module angles. 
frame Ot  (in blue with axes XO –YO –ZO , YO  axis not shown and 
pointing inside the drawing plane) is the inertial frame of refer-
ence, and Bt  (green, XB –YB –ZB ) is the body-fixed frame. the 
cube is shown standing on its corner, where the corner coincides 
with the inertial frame origin. for edge balancing, the body frame 
y-axis YB  is the balancing axis. the zero directions of the module 
angles , ,, 2 61 f{ {{  are indicated as the dashed black lines (point-
ing downward, toward the balancing corner), and the direction of 
positive rotation is such that the rotation vector points to the cube’s 
center.

The balancing cube is a standalone device that can operate  

almost anywhere there is solid ground.
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The acceleration that is sensed by an IMU depends on 
the IMU mounting position and orientation on the rigid 
body. Because the IMU is a component of the nonmoving 
part of the module, its position and orientation are constant 
in the body frame .Bt  The positions of the six IMUs on the 
cube body are denoted by .pB

i  Each sensor measures accel-
erations and rotations in its local sensor frame .Ait  The IMU 
orientation is captured by the rotation matrix .SB

Ai  Since the 
mounting of the IMUs is known, pB

i  and SB
Ai  are known for 

all sensors.

3-D Simulation Model
A multibody model capturing the nonlinear system 
dynamics in 3-D was built in SimMechanics, which is an 
extension of Matlab/Simulink for physics-oriented sym-
bolic modeling of mechanical systems, [43]. A library was 

created that includes models of all system components, in 
particular, the cube body and the modules with their 
actuation mechanism and sensors. The library facilitates 
the assembly of models for different simulation scenarios 
(for example, corner or edge balancing) and allows for 
easy modification of the complete system or its subcom-
ponents. A screenshot of a part of the model is shown in 
Figure 11.

The SimMechanics model provides a convenient simu-
lation platform for design and verification of the control 
and estimation algorithms. Furthermore, it is used to 
automatically generate linearized models about different 
equilibrium configurations, as described below. An ear-
lier version of this model was used for feasibility studies 
and to support design decisions early in the project’s 
development.

Rigid Body

Inputs: Applied Torque
Outputs: Module Sensors

Modules

Connect to
Ground

Joint
Connect

1
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Body to Module

Input
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Body to Module
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Accelerometer [m/s2]
Gyro [rad/s]

Body to Module

Input
AbsEnc_modPos [rad]

MotEnc_modVel [rad/s]

Accelerometer [m/s2]
Gyro [rad/s]

Body to Module

Input
AbsEnc_modPos [rad]

MotEnc_modVel [rad/s]

Accelerometer [m/s2]
Gyro [rad/s]

Body to Module

Module_2

Module_3

Module_4

Module_5

Module_6

1

Sensors_1
1

Sensors_2
2

Sensors_3
3

Sensors_4
4

Sensors_5
5

Sensors_6
6

Input_2
2

Input_3
3

Input_4
4

Input_5
5

Input_6
6

CS1

Body

CS2

CS3

CS4

CS5

CS6

CS7

figure 11 simmechanics model. shown is a screenshot of the highest model level with the cube body block (orange) and the six mod-
ules (yellow). inputs to the modules are the motor torques, and the outputs are the sensor measurements. the cube’s ground connection 
is either to a ball joint (for corner balancing) or a revolute joint (for edge balancing).
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Linear Dynamics Model
Different static equilibrium configurations can be obtained 
for both edge and corner balancing by varying the nominal 
angles of the modules. Herein, the two basic configurations 
in Figures 1 and 2 (for corner balancing) and in Figures 3 
and 4 (for edge balancing) are considered. The modeling 
procedure does not, however, depend on the specific equi-
librium and can readily be applied in the same way for 
other equilibria. Due to the particular mass configuration 
of the cube body and the modules, the range of equilibria is 
limited. The maximum that the cube can tilt and still 
remain in equilibrium is discussed in “What Is the Cube’s 
Maximal Balancing Range?”

Expressed in generalized coordinates (2), the considered 
equilibrium for corner balancing is

 tana, , , , , , , ( / ), .q 0 0 0 0 0 0 1 2 4
c
0 a

r= -` j  (3)

It corresponds to the cube standing upright (its body diagonal 
being parallel to the gravity axis) and all modules pointing 
downward as shown in Figures 1 and 2. The yaw angle a  is 
left unspecified and can be arbitrary. The edge balancing equi-
librium configuration shown in Figures 3 and 4 is given by

 , , , , , , , , .q 0 0 2 4 0 4
3

4 0o
e r r r

a
r= - - -` j  (4)

T his study investigates how much the cube body can tilt in 

static equilibrium by changing the module angles, as com-

pared to the upright configurations (3) and (4). the maximal tilt 

calculated below is a theoretical upper bound on the feasible 

balancing range (for greater tilt, the multibody system has no 

static equilibrium for any configuration of the modules). the cal-

culations are based on the simmechanics multibody model.

to illustrate the dependency of the cube tilt on the module 

angles in static equilibrium for corner balancing, the equilib-

rium tilt is computed for the module angles parameterized by

 ( , , , , , ) ( , , , , , ),0 01 2 3 4 5 6{ { { { { { z z z z= - -  (s1)

with parameter z  ranging from 0° to 180°. for 0cz = , the 

module configuration (s1) is the same as for the nominal “up-

right” equilibrium (3). the chosen parameterization affects the 

equilibrium only in pitch direction; the roll equilibrium angle is 

identical to the nominal 0c  in (3) for all z . the difference of 

the resulting equilibrium pitch (denoted by br ) from the nomi-

nal pitch 0b  in (3) is shown in figure s2. additionally, the  

resulting horizontal displacement dxy  of the cube tip is shown in  

figure s2; it is given by

 : , ,
. m
. m
. m

,
d
d
d

S S
1 2
1 2
1 2

x

y

z

B
O

B
O

0 0b c b c= - r r^ ^^ h hh> >H H  (s2)

 :d d dxy x y
2 2= +  (s3)

where 1.2 m is the edge length of the cube. the maximal pitch 

angle difference .6 740 cb b- =-r  corresponds to the maximal 

tip displacement of 24.4 cm; it is attained for . .10 52 cz =  as 

verified by an optimization over the module angles without the 

constraint (s1), the maximal displacement is, in fact, the global 

maximum for all possible module angles. the module configu-

ration (s1) with .10 52 cz =  is, however, not the only configura-

tion that maximizes the cube tip displacement.

a similar analysis for edge balancing yields a maximal tilt 

from the upright standing cube [ 0b  in (4)] of 8.15°, which cor-

responds to a tip displacement of .d 24 1xy =  cm.

the obtained maximal tip displacements represent the 

maximal range of static equilibria. in practice, the maximal 

range of equilibria that can be stabilized is smaller due to  

actuation limitations and sensor noise.
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figure S2 cube tilt and tip displacement for different corner bal-
ancing equilibria. the pitch angle br  in static equilibrium is 
shown in (a) as a function of the module angle parameter z  [the 
module angles are parametrized according to (s1)]. for better 
comparability, the nominal pitch 0b   is subtracted; that is, an 
angle of 0° corresponds to the nominal equilibrium (3), where 
the cube is standing upright. for the chosen parameterizations, 
the roll angle is equal to the nominal ( )0c c=r  and therefore 
omitted here. the corresponding horizontal displacement dxy  of 
the cube tip from the upright configuration is shown in (b).

What Is the Cube’s Maximal Balancing Range?
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The dynamics of the multibody system about an equilib-
rium configuration (3) or (4) are described by the state-
space model

 ( ) ( ) ( )x t Ax t Bu t= +o  (5)

with the system inputs ( )u t R6!  being torques applied to the 
modules, and ( )x t Rn!  the state vector. The system states are 
the generalized coordinates of the multibody system and 
their time derivatives; that is, the angles and angular veloci-
ties of the modules and the cube body. When the cube stands 
on an edge, it has one rotational DOF (the pitch angle b); 
when it is balancing on a corner, it has three rotational DOFs. 
The rotation about the gravitational axis can, however, be 
neglected for balancing and is removed from the state-space 
equations. The relevant state of the cube body is therefore 
fully characterized by the pitch and roll angles, b  and c , and 
their derivatives. Hence, n 14=  for edge balancing, and 
n 16=  for corner balancing. The physical meaning of states 
and inputs is summarized in Tables 2 and 3.

Built-in functions in Matlab/Simulink are used to com-
pute numerical values for the state space model ,A B^ h from 
the SimMechanics model. Since for the controller design 
procedure it makes no difference whether edge or corner 
balancing is considered, the general state-space description 

,A B^ h is used throughout the article. The open-loop poles 

of the system are listed in Table 4. The numerical values for 
the state space matrices ,A B^ h can be found in [44].

Nonlinear Sensor Model
Functional relations between measurements y  and the 
system states x , which form the basis for developing  
the state estimation algorithms, are sought in this section. 
The obtained sensor model is linear for the absolute encoder 
and nonlinear for the accelerometer and rate gyroscope.

accelerometer model
The previous definitions of the inertial frame Ot , the body 
frame Bt , and the IMU frame Ait  are used to express the 
acceleration yaccAi

i  measured by the triaxis accelerometer on 
module i . The accelerometer located at the position pO

i  
measures the acceleration pO

ip  of the cube body at this posi-
tion plus the gravity vector gO  plus sensor noise, all in its 
local frame Ait . That is,

 ( ) ,y S S p g wacc accA
i B

A
O
B O

i
O A

i
i i i= + +p  (6)

where y accA
ii  is module i’s accelerometer measurement  

(in m/s2), and w accA
ii  is measurement noise. The noise  

is assumed to be zero-mean, band-limited white noise  
with standard deviation ;accv  that is, [ ] ,w 0E accA

i
i =  

[ ( ) ] ,w w IE acc acc
acc

A
i

A
i

T 2i i v=  where E $6 @ denotes the expected 
value and I  denotes the identity matrix of appropriate 
dimensions. This noise model is reasonable for many 
MEMS accelerometers once the bias has been removed and 
if scaling and axes cross coupling errors are neglected [45]. 
Biases in the state estimates resulting from sensor biases 

State Variable physical meaning
x1 1{ , angle module 1

x2 2{ , angle module 2
  h    h

x6 6{ , angle module 6

x7 1{o , angular velocity module 1

x8 2{o , angular velocity module 2
  h    h

x12 6{o , angular velocity module 6

x13 b , cube pitch angle

x14 bo , cube pitch rate

x15 c , cube roll angle (corner balancing only)

x16 co , cube roll rate (corner balancing only)

tAble 2 the states of the cube model (5). roll angle and 
roll rate, x15 and x16, are relevant only for corner balancing.

tAble 3 the inputs of the cube model (5).

input Variable physical meaning
u1 torque at module 1

u2 torque at module 2
  h                h

u6 torque at module 6

corner balancing edge balancing
     .2 92      .3 09

     .2 92      .0 0

.2 92- .3 11-

.2 92- .1 04-

. . i0 505 3 8!- . . i0 294 3 09!-

. . i0 505 3 8!- . . i0 294 3 14!-

. . i0 54 3 97!- . . i0 516 4 15!-

. i0 362 4!- . . i0 315 4 53!-

. . i0 341 4 14!- . . i0 559 0 207!-

. . i0 341 4 14!- –

tAble 4 open-loop poles. the linear cube model (5) 
has 16 poles for corner balancing and 14 poles for edge 
balancing. the poles were computed numerically from 
the Simmechanics models. the two unstable poles for 
corner balancing correspond to the two dimensions of the 
cube that need to be stabilized. the pole roughly at zero 
for edge balancing is due to the fact that two modules are 
horizontal (the top modules in figure 4). it corresponds to 
an eigenmode with equally directed displacement of these 
two modules.
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are compensated by using integral action in the control 
algorithm. This is explained later in the section “Control.”

From the identity p S pO
i B

O B
i=  and the fact that pB

i  is 
constant with time, it follows that

 ,p S pO
i B

O B
i= pp  (7)

where SB
O p  denotes the second derivative of the rotation 

matrix SB
O  with respect to time. The matrix SB

O p  captures the 
rotational and centripetal acceleration terms of the cube 
rigid body motion. Using (7) and multiplying (6) with SA

B
i  

from the left yields

 ,y S p g wacc accB
i

B
i

B B
i= + +u  (8)

where

 :S S SO
B

B
O=u p  (9)

combines the rotation and acceleration of the rigid body,

 gg SB
O
B O=  (10)

is the gravity vector in body coordinates, and

 w S wacc accB
i A

B A
ii

i=  (11)

is the noise vector rotated to the body frame. The mean and 
variance of the noise still satisfy [ ]w 0E accB

i =  and 
[ ] .w w IE acc

acc accB
i

B
i

T 2v=^ h
Equation (8) expresses an accelerometer measurement 

as a function of the rigid body dynamics (captured in Su ), 
the gravity vector in the body frame ,gB  and sensor noise. 
This relation is used in the section “State Estimation” to 
obtain an estimate of gB  from multiple accelerometer mea-
surements. By means of (10) and the representation (1) of 

,SO
B  an estimate of the cube tilt is then obtained.

rate gyroscope model
The six rate gyros measure the angular rate vector of the 
cube body: expressed in the body frame of reference ,Bt

 ,y wgyro gyroB
i

B B
i~= +  (12)

where ygyroB
i  is the i th rate gyro measurement (in rad/s) 

rotated to the body frame, B~  is the angular rate vector in 
the body frame, and wgyroB

i  is sensor noise with zero mean 
and variance [ ( ) ] .w w IE

gyro gyro
gyro

B
i

B
i

T 2v=

The body rotation vector relates to the Euler angle rates  
, ,a b co o o  by (see [46], for example)

 ( , ) ,T B
a

b

c

b c ~=

o
o

o
> H  (13)

with the nonlinear transformation

 ( , ):
( )/ ( )

( )
( ) ( )

( )/ ( )
( )

( ) ( )
.

sin cos
cos

sin tan

cos cos
sin

cos tan
T

0
0
1

b c

c b

c

c b

c b

c

c b

= -> H  (14)

The transformation matrix (14) is nonsingular for the 
considered equilibria (3) and (4). Equations (12) and (13) 
are used later to obtain estimates of the pitch rate bo  and 
the roll rate co .

absolute encoder model
The sensor model of the absolute encoder is straightfor-
ward: each absolute encoder measures the corresponding 
module angle. Hence, the measurement yenc

i  (in rad) of 
module i ’s absolute encoder is given by

 ,y wenc enc
i i i{= +  (15)

where wenc
i  is a random variable modeling the quantization 

error due to finite encoder resolution.

CONTROL SYSTEM ARChITECTuRE
The SBCs on the modules run the estimation and control 
algorithms, which enable the cube to balance. Based on its 
local sensor data and data communicated from the other 
modules over CAN, each module’s SBC computes com-
mands for its local actuator. The components of the net-
worked control system are depicted in Figure 12.

The algorithms implemented on each module comprise 
a state estimator and a state-feedback controller. Each 
module maintains an estimate xt  of the full system state x , 
which it computes from all available sensor data (local and 
IMC data). The controller uses this estimate to compute the 
actuator command. The block diagram in Figure 13 repre-
sents the implementation of the feedback-control system.

A crucial question for the design of the estimation and 
control algorithms is what data is shared between the 
modules over CAN. Since CAN is a broadcast network, if 
one module sends data, the data can be received by all the 
others. For the results presented in this article, all mod-
ules share all their local sensor data (IMU and absolute 
encoder) over CAN. The capacity of the network is such 
that all modules can broadcast their sensor measurements 
every 10 ms, which is the time step of the feedback con-
trollers Ki . Delays and losses in the transmission of sensor 

Plant

SBC SBC SBC

CAN Bus

AS AS AS

figure 12 abstraction of the networked control system. the 
blocks a and s denote actuator and sensor units. the single-
board computer (sbc) runs estimation and control algorithms and 
manages the communication with the other modules over the con-
troller area network (can) bus.
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data are not taken into account in the design of the algo-
rithms in this article.

With this communication scheme, the available sensor 
information on each module is identical. Therefore, the 
modules can run a copy of the same state estimator (see 
Figure 13). Consequently, the inputs to the controllers Ki  
are also identical. Hence, state estimation and control 
design are treated as the centralized problem given in 
Figure 14: the state estimator has access to all measure-
ments and the controller K  computes all system inputs. 
The distributed implementation of the feedback system in 
Figure 13 is then straightforward: a copy of the estimator 
runs on each module, and the local controllers Ki  are 
obtained from K  by selecting the output corresponding to 
the local actuator.

The communication protocol considered herein rep-
resents the case of maximal information in terms of 
sensor data and serves as a baseline for distributed or 
event-based algorithms that cope with a reduced set of 

sensor data. Depending on what aspect of a distributed 
and networked control system is to be studied, different 
protocols and topologies can be implemented on the bal-
ancing cube by constraining the IMC (for example, 
reducing the average communication rate such as in [40] 
and [41]).

STATE ESTIMATION
This section addresses the design of the centralized state 
estimator shown in Figure 14. Since the estimator is ulti-
mately implemented on a digital computer, the estimator 
equations are expressed in discrete time. For this purpose, 
the discrete-time index k N!  is used: for a continuous-
time signal ( )s t , [ ]s k  denotes its value at time ,t kTs=  where 
Ts  is the sampling time; thus, [ ] ( )s k s kTs= . Measurements 
are assumed to be acquired at the discrete-time instants k . 
The objective of this section is to develop an algorithm that 
computes an estimate [ ]x kt  of the system state [ ]kx  based on 
all sensor measurements at time k .

In contrast to many standard methods for state estima-
tion, such as the Luenberger observer [47] or the Kalman 
filter [48], the approach to state estimation presented 
herein requires neither the knowledge of a dynamic 
system model [for instance, in the form of (5)] nor knowl-
edge of the system inputs u k6 @. Instead, estimates of all 
states are computed from the sensor measurements only. 
In addition to reducing the modeling effort, an immediate 
favorable consequence of this approach is that the state 
estimator is robust to modeling errors in the system 
dynamics or their intentional modification (for example, 
when weights are added to the modules). Furthermore, 
the estimator works both for slow and fast motion, and 
irrespective of the operation mode (such as corner balanc-
ing, edge balancing, or the cube being moved into starting 
position by an operator).

The design of the state estimator is addressed below 
separately for the module and the cube states.

Module States
The module angle i{  is measured by the absolute 
encoder on module i according to the sensor model (15). 
Since the quantization error is negligible for the balanc-
ing application presented herein, filtering of the encoder 
measurement is not necessary. The encoder measure-
ment yenc

i  is hence directly used as the module angle 
estimate; that is,

 [ ] [ ], , . . . , .x k y k i 1 6enc
i i= =t  (16)

An estimate of the module angular velocities i{o  may 
be readily obtained from the encoder measurements 
(15); for example, by numerical differentiation combined 
with appropriate lowpass filtering. Since the motors are 
operated with local velocity feedback ensuring fast 
tracking of velocity commands, actual estimates of the 

PlantK
u

Estimator
yxt

figure 14 centralized design problems. since each module 
shares its sensor data with all other modules at every time step, 
the designs of the state estimator and the state-feedback control-
ler K  can be addressed as centralized problems. therein, the 
state estimator has access to all sensor measurements 

( , , )y y y1 6f= , and the state-feedback controller K  computes all 
system inputs ( , , )u u u1 6f= .
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figure 13 Distributed implementation of the control system. each 
module i  runs a state estimator and a controller Ki . the signal yi  
combines all of module i ’s sensor measurements, and ui  denotes 
its control input. Different communication protocols can be imple-
mented for the intermodule communication (imc): for the design 
and results presented in this article, each module broadcasts its 
sensor measurements to all other modules.
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module velocities are not required for the state feedback 
controller. This aspect is discussed in detail in the sec-
tion “Control.”

Cube States
Estimates of the cube’s tilt ( , )b c  and the tilt rates ( , )b co o  are 
obtained from the measurements of the six IMUs on the 
cube body, each of which includes a triaxis accelerometer 
and rate gyro. In a first step, the accelerometer measure-
ments are used to generate an estimate of the tilt angles 
that is independent of the rigid body motion. This estimate 
is fused in a second step with an estimate of the tilt rates, 
which itself is obtained from the rate gyro measurements.

tilt estimate from accelerometers
An estimate of the cube’s tilt is obtained by the following 
approach: first, an unbiased estimate gBt  of the gravity vector 

gB  in the body frame is derived as a linear combination of all 
accelerometer measurements based on the model (8). Second, 
the accelerometer-based tilt estimate ( [ ], [ ])k kacc accb ct t  is con-
structed from the gravity vector estimate using (10) and the 
representation (1) for the rotation matrix .SO

B

In static conditions, a single triaxis accelerometer 
mounted on a rigid body is enough to measure the gravity 
vector gB  in body frame. In fact, from (8) it can be seen 
that, for static conditions where S 0B

O =p  and hence S 0=u , 
each individual accelerometer measurement yaccB

i  is an 
unbiased estimate of the gravity vector gB . The difficulty 
in the context of the balancing cube arises from the fact 
that the rigid body moves during balancing, and therefore 
S 0!u  in general.

The tilt estimation method presented herein makes use 
of multiple accelerometers mounted on the same rigid 
body. Exploiting the kinematics of the rigid body with only 
rotational DOFs and the knowledge of the different sensor 
locations allows one to compensate for the dynamic terms 
of the rigid body motion in the accelerometer measure-
ments. The algorithm works for any rigid body that has 
only rotational DOFs and measurements from multiple tri-
axis accelerometers. To state the method for the general 
case, the constant N  is used below to denote the number of 
sensors (for the cube, N 6= ). The algorithm was first pre-
sented in [49].

gravity Vector estimate
The first objective is to obtain an estimate gBt  of the gravity 
vector from all accelerometer measurements ,yaccB

i  
, . . . ,i N1=  that is optimal in a least-squares sense.

For notational convenience, all N  measurements (8) are 
combined into one matrix equation, 

 ,Y XP W= +  (17)

 : ,Y y y y Racc acc accB B B
N

N
1 2

3g != #6 @  (18)

 : ,X g S RB 3 4!= #u6 @  (19)

 : ,P p p p
1 1 1

RB B B
N

N

1 2

4g

g
!= #= G  (20)

 : ,W w w w Racc acc accB B B
N

N
2

3
1 g != #6 @  (21)

where Y  combines all accelerometer measurements, X  is 
the matrix of unknown parameters, P  is the matrix of 
known parameters (the sensor locations), and W  combines 
all accelerometer noise vectors, with [ ]W 0E =  and 

[ ] .W W I3E acc
T 2v=  Notice that , ,Y X  and W  in (17) are time 

varying, whereas P  is constant. The time index k is omitted 
for ease of notation.

In addition to the sought gravity vector gB , the unknown 
matrix X  also contains the matrix Su , which captures the 
second derivatives of the rigid body motion according to 
(9). In [49], a method is presented for optimally estimating 
the entire matrix X . To shorten the exposition, only the 
results for optimally estimating the gravity vector gB  are 
presented here.

An unbiased estimate gBt  of the gravity vector gB  is 
sought such that the two-norm of the estimation error is 
minimized; that is,

 argming g gEB
g

B B
2
2

B
= -t t

t
8 B  subject to [ ] g,gE B B=t   (22)

where 2$  denotes the vector two-norm. The estimate gBt  is 
restricted to linear combinations of the measurements Y ; 
that is, a vector RNdm  is sought for .g YB m=t  This approach 
yields a straightforward implementation: at each time step, 
the estimate gBt  is obtained by a single matrix-vector multi-
plication. The following proposition, the proof for which can 
be found in [49, Lemma 2.2], states the optimal unbiased 
linear estimate of the gravity vector. 

Proposition 1
Let the matrices P R N4! #  and Y R N3! #  be given and sat-
isfy Y XP W= +  with unknown matrix [ ]X g S RB 3 4!= #u  
and the matrix random variable W R N3! #  with 

[ ] , [ ] .W W W I0E E T
W
2v= =  Assuming P  has full row rank, 

the (unique) minimizer RN 1!m) #  of

 [ ]subject tomin Y g Y gE EB B
2
2

m m- =
m
8 B  (23)

is given by [ ] ( ) .P PP* T T
2

1mK K= =) ) -

Applying Proposition 1 and reintroducing time index k  
for all time-variant quantities yields the gravity vector esti-
mate [ ],g kBt

 [ ] [ ] .g k Y k *B m=t  (24)

The optimal fusion vector *m  is constant and entirely defined 
by the geometry of the problem (through P ).
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In Proposition 1 it is assumed that P  has full row rank. 
To obtain a physical interpretation of this assumption, con-
sider the case where P  does not have full row rank. Then, 
there exists a nontrivial linear combination of the rows of 

;P  that is,

 there exists ,p p p0 1 0such thatR X Y Z
4

1 2 3 4! !p p p p p+ + + =

 ,p p p 01such that X Y Z1 2 3 4p p p p+ + + =  (25)

where , ,p p p RX Y Z
T T T N1! #  are the last three rows of P  (the 

vectors of X, Y, and Z-coordinates of all sensor locations) 
and 1 RT N1! #  is the vector of all ones. Expression (25) is 
equivalent to the statement

there exists , ,. . .p p p i N10 such that for allR , , ,
B

X i
B

i
B

iY Z
4

1 2 3 4! !p p p p p+ + =- = 
 p p psuch that , , ,

B
X i

B
Y i

B
Z i1 2 3 4p p p p+ + =-  

 , ,. . .p p p i N10 such that for allR , , ,
B

X i
B

i
B

iY Z
4

1 2 3 4! !p p p p p+ + =- =  (26)

where , ,p p p, , ,X Y Z
B

i
B

i
B

i  denote the X, Y, and Z-coordinate of 
the ith sensor location in the body frame. Since the equa-
tion x y z1 2 3 4p p p p+ + =-  defines a plane in ( , , )x y z -space, 
condition (26) is equivalent to all N  sensors lying on the 
same plane. Therefore, the full row rank condition on P  is 
satisfied if and only if not all sensors lie on the same plane. 
Moreover, since three points always lie on a plane, this 
result implies that at least four triaxis accelerometers are 
required for the method presented herein. For the cube, the 
full row rank assumption of P  is satisfied.

The gravity vector estimate (24) can be shown to be inde-
pendent of the rigid body dynamics (captured in Su ) as fol-
lows: from the singular value decomposition of the 
parameter matrix P,

 ,P U
V

V
U V0

T

T
T1

2
1R R= =6 =@ G  (27)

with U R4 4! #  unitary, R4 4!R #  diagonal, , ,V VR R ( )N N N
1

4
2

4! !# # - 
, ,V VR R ( )N N N

1
4

2
4! !# # -  and [ ]V V V1 2=  unitary, it can be verified 

that .V U* T
1

1K R= -  With this result and using the partition 
[ ],U U UT T T

1 2=  , ,U UR RT T
1

4 1
2

4 3! !# #  the gravity vector 
estimate can be written as
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(28)

Obviously, the matrix Su  does not appear in the estimate; 
that is, the gravity vector observation is not affected by any 
motion of the rigid body. As expected, the sensor noise W  
does enter the estimation equation.

tilt (Pitch and roll) estimate
With the estimate gBt  of the gravity vector in the body 
frame, (10) can be used to compute an estimate of the rigid 
body tilt ( , ),b c  since the direction of the gravity vector in 
the inertial frame is known. Inserting the representation (1) 
for ,SB

O  and [ ] ,g g0 0O T
0=  with gravity constant g0 , (10) 

can be rewritten as

 ( ) ( ) ( )
( )

( ) ( )
( ) ( )

.
sin

sin cos
cos cos

g S S S g gX Y Z
B T T T O

0c b a

b

c b

c b

= =

-

> H  (29)

Given the estimate of the gravity vector (24), the accelerometer- 
based tilt estimate at time k  is

 2tan[ ] a [ ], [ ] [ ] ,k g k g k g kacc B
x

B
y

B
z

2 2b = - +t t t t` j  (30)

 2tan[ ] a [ ], [ ] ,k g k g kacc B
y

B
zc =t t t^ h  (31)

where atan2 is the four-quadrant inverse tangent. Note that 
the gravity constant g0  does not need to be known and, 
hence, the estimator does not to be calibrated for it. The 
estimator requires only knowledge of the accelerometer 
locations on the cube body.

tilt rate estimate from rate gyros
Estimates of the tilt rates are obtained from the rate 
gyro measurements (12) and the transformation (13). 
First, an estimate [ ]kB~t  of the rotation vector [ ]kB~  at 
time k  is computed by averaging the available rate gyro 
measurements,

 [ ] [ ] .k y k6
1 gyroB B

i
i 1

6

~ =
=

t /  (32)

Given that the rate gyro sensors have identical noise vari-
ance, the average represents the best unbiased linear esti-
mate of [ ]kB~  minimizing the mean squared error. Using 
the transformation (13), an estimate of yaw, pitch and roll 
rates is given by
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where the transformation matrix ·, ·T^ h is evaluated at the 
yet undefined estimates [ ]k 1b -t  and [ ]k 1c -t  of pitch and 
roll angle at the previous time step. They are made precise 
in the next subsection. The estimate of the yaw rate [ ]kaot  is 
not required for the balancing application presented in this 
article.

sensor fusion
To further reduce the noise level of the tilt estimate, the 
accelerometer-based tilt estimate (30), (31) is fused with the 
integrated estimate of the tilt rates (33). The tilt estimate 
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( [ ], [ ])k kb ct t  is obtained from a linear combination of accel-
erometer- and gyro-based estimates according to

 [ ] [ ] [ ] ( ) [ ] [ ] ,x k k k k T k1 1acc
s13 1 1b l b l b b= = + - - +t t t t ot` j  (34)

 [ ] [ ] [ ] ( ) [ ] [ ] ,x k k k k T k1 1acc
s15 2 2c l c l c c= = + - - +t t t t ot` j  (35)

where Ts  is the sampling time and 1l  and 2l  are tuning 
parameters, which, given the noise specifications of accel-
erometers and rate gyros, can be chosen to minimize the 
estimation error variance.

experimental Validation
The estimator for the cube states is validated in [49]  
using a camera-based global positioning system, which  
tracks the position and orientation of the cube body with  

submillimeter precision. The main experimental results 
from [49] are restated here. For further details, the reader 
is referred to the original publication.

Figure 15 shows the accelerometer-based tilt estimate 
(30), (31) in comparison to the camera-based reference 
measurement. For this experiment, the cube was moved 
manually about the nominal corner balancing equilib-
rium (3). Additionally, the tilt estimate is included that 
would result if only a single triaxis accelerometer was 
used to observe the gravity vector (instead of (24), the 
accelerometer measurement (8) is used directly as an esti-
mate of the gravity vector). The data shows that, when the 
cube is relatively static (from 45 s to 50 s), the single- 
accelerometer-based estimate is satisfactory. However, 
when the cube body is moving fast, the estimate suffers 
from the dynamic terms that act as disturbances to the  
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figure 15 Verification of the accelerometer-based tilt estimator. for this experiment, the cube was moved manually around the nominal 
equilibrium (3) ( .0 615c

0b =-  and .0 785c
0c = ). the pitch and roll estimates accbt  and accct  are shown in the graphs on the left (in blue) with 

their camera-based reference (red). for comparison, the graph in green is the tilt estimate that results if a single triaxis accelerometer mea-
surement is used directly as an estimate of the gravity vector [instead of the fusion equation (24)]. the corresponding error signals are shown 
on the right. clearly, the multi-accelerometer-based estimator outperforms the single-accelerometer one, especially when the cube is being 
moved fast. the static biases visible in the estimation error signals result from biases in the accelerometers and/or in the camera system. 
the biases are, however, irrelevant for the balancing application, since biases in the state estimates are compensated by integral action in 
the controller. this effect is analyzed in “What is the effect of integral action in the controller?” (the experimental data is taken from [49].)
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single-accelerometer-based estimator. The experimental 
data illustrates the result discussed in (28), namely that 

the presented (multi) accelerometer-based tilt estimator 
compensates for the rigid body dynamics.

Figure 16 shows the comparison of the 
improved tilt estimates (34) and (35), 
which are based on accelerometer and 
rate gyro data, to the camera-based  
reference during autonomous balancing 
of the cube.

Summary: The Complete  
State Estimator
The complete state estimator is given by 
(16), (24),  and (30)–(35). It is summarized 
in the block diagram of Figure 17. Memory 
is present only in the sensor fusion in (34) 
and (35); hence, the estimator has only two 
states. The estimator is nonlinear because 
of the nonlinear transformations in (30), 
(31), and (33). 
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figure 16 Verification of the tilt estimator. the data was taken while the cube was balancing about the nominal equilibrium (3) ( .0 615c
0b =-  

and .0 785c
0c = ). the pitch and roll estimates bt  and ct , resulting from fusing accelerometer and rate gyro measurements, are shown on 

the left (blue) with the camera-based reference (red). the graphs on the right show the corresponding error signals. constant biases in the 
state estimates are compensated by integral action in the control algorithm. (the experimental data is taken from [49].)
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figure 17 the state estimator. all encoder, accelerometer, and rate gyro measure-
ments are input to the estimator; its outputs are the estimates of all states that are 
required for feedback control (estimates of the module velocities [ ]x k:7 12  are not 
required as is discussed in the section “control”).
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None of the estimator equations in Figure 17 depends 
on the system dynamics. The only assumption on the rigid 
body is that it is pivoting (it has only rotational DOFs). 
Hence, the estimator works irrespective of the system 
dynamics and, in particular, for slow and fast motion, for 
different mass configurations, and for both edge and 
corner balancing.

CONTROL
The design of the centralized controller K  shown in Figure 14 
is described in this section. The controller is designed as an 
LQR with additional integrator feedback on the module 
angles. The controller design is based on the model (5). The 
main control objective is the stabilization of (5); that is, to bal-
ance the cube about the corresponding equilibrium (3) or (4).

T he time-scale separation algorithm is a transformation of a 

continuous-time, state-space model ( , )A B  to a discrete-time 

model ( , )A Bu u  that represents ( , )A B  under high-gain feedback 

on some of its states through a controller K loc  (see figure s3). 

the method allows one to obtain a simplified model of the feed-

back system without detailed knowledge of the controller ,K loc  

by approximating it as an ideal controller with infinite propor-

tional gain. this approximation is legitimate as long as the time 

scales of the feedback loop dynamics are sufficiently smaller 

than those of the remaining system. the resulting model can be 

used, for example, to design an outer-loop controller that feeds 

references to the inner-loop controller K loc . the algorithm was 

first presented in [51].

consider the continuous-time, state-space representation
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where the states ( )x t  are separated into those on which local 

feedback is applied ( ( )x t Rf
nf! , index f for “fast’’) and the 

remaining ones ( ( )x ts , index s for “slow’’). to model the con-

troller K loc , proportional feedback on the states xf  is assumed 

to be of the form

 ( ) ( ( ) ( )),u t B F v t x tf f
1= --  (s5)

where ( )v t Rnf!  is a piecewise constant reference signal 

changing at a rate Ts , diag( , , , )F f f fn1 2 ff=  is a diagonal matrix 

with entries fj , and Bf  is assumed invertible. the feedback 

(s5) means that individual loops are closed on the states ( )x tf .

to obtain the discrete-time representation ( , )A Bu u , the feed-

back system given by (s4) and (s5) is first discretized at the 

sampling rate Ts . to represent ideal feedback loops, the con-

troller gains fj  in (s5) are chosen to approach infinity in the lim-

it. the model ( , )A Bu u  is then obtained using a limiting property 

of the matrix exponential, which is derived in [51]. the resulting 

model has the structure 
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 (s6)

the details of the derivation are omitted here, but can be 

found in [51]. notice from (s6) that [ ] [ ];x k k1f y+ =  that is, the  

reference is achieved in one time step, which corresponds to 

the infinite gain assumption.

AppLICATION TO ThE CubE MODEL

the time-scale separation algorithm is used to compute a 

model for the block ( , )A Bu u  in figure 18. for this purpose, the 

state-space model (5) is partitioned in blocks corresponding to 

module angles, module velocities, and cube states
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through the controllers on each drive unit, local feedback 

is applied on the module velocities x t:7 12 ^ h (see figure 18). 

hence, the time-scale separation technique above is applied 

with ( ) ( )x t x tf :7 12=  and ( ) ( ( ), ( )) .x t x t x ts : :n1 6 13=  since each 

module has an individual torque input, B Bf 2=  is invertible. 

the reference signals [ ]v k  are the velocity commands sent to 

the motors at an update rate of .T 0 01s =  s. the resulting model 

corresponding to (s6) is
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the discrete-time model (s8) captures the dynamics of the 

cube including the local velocity feedback. the numerical val-

ues for the matrices ( , )A Bu u  may be found in [44].

figure S3 system with partial state feedback. the system is 
described by the continuous-time, state-space model )( ,A B . 
feedback loops are closed on some states ( )x tf  through control-
ler K loc  with reference input [ ]kv  changing at a rate Ts . the time-
scale separation algorithm computes a discrete-time model 
( , )A Bu u  with sampling time Ts  under the assumption of an ideal 
feedback controller K loc  with infinitely high proportional gains.

Kloc

xs(t)
xf(t)

v[k] x[k]u(t)
(A, B)

-

(Au, Bu )

Time-Scale Separation Algorithm
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System (5) captures the linearized pitch and roll dynamics 
of the cube; the controller thus locally stabilizes pitch and roll. 
Control of the yaw angle is not considered herein (the yaw 
motion is negligible in typical operation of the cube). The 
problem of simultaneously stabilizing yaw, pitch, and roll 
angles of a 3-D pendulum is addressed in [22]–[24].

The drive units are operated in velocity mode; that is, 
the motor shaft angular velocity is controlled locally on 
each drive unit. When neglecting gear backlash, the shaft 
velocity is proportional to the module velocity by the gear 
ratio; hence the feedback on the drive units is treated as 
feedback on the states , ...,x x7 12^ h. The corresponding con-
trollers are denoted by K loc . Their reference input v  is 
computed by the controller K . This cascaded control 
architecture is shown in Figure 18. It consists of the inner-
loop controllers K loc  and the outer-loop controller K . The 
inner-loop controllers  K loc  operate at an update rate of  
1 kHz, whereas the outer loop runs at rate of 100 Hz. The 
parameters of K loc are tuned using a software tool pro-
vided by the manufacturer of the drive unit.

In contrast to designing a controller for system (5) directly 
(that is, a controller that computes the torque inputs u), the 
cascaded architecture with fast local velocity feedback 
reduces the complexity of the controller design problem. In 
model (5), it is assumed that the torque at the module can be 
controlled directly. In reality, however, only the torque at the 
motor can be controlled. This is translated to the torque at 
the module in a nontrivial way through a transmission 
system, which involves nonlinearities such as kinetic and 
static friction and backlash. The application of high-gain 
velocity feedback mitigates the effect of the nonidealities in 

the actuation mechanism and allows one to abstract them 
away for the design of the controller K .

Simplified Model Incorporating Local Feedback  
Loops from Time-Scale Separation
The design of the outer-loop controller K  requires a system 
model that incorporates the effect of the inner loops (repre-
sented by the dashed block ( , )A B

~ ~
 in Figure 18). To avoid 

modeling the details of the local controllers K loc , the motor 
and its local controller are abstracted as a system that 
achieves a commanded module velocity sufficiently fast. In 
fact, the ideal case of infinitely fast feedback is considered. 
This approximation is legitimate as long as the inner control 
loop operates sufficiently faster than the outer loop (the 
tracking performance of the inner loop is discussed in the 
section “Experiments”). The method described in “Time-
Scale Separation Algorithm” is used to compute a model of 
system (5) that incorporates the feedback on the module 
velocities. The obtained model is a discrete-time model with 
the sampling time of the outer-loop controller, .T 0 01s =  s,
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where : , ..., .x x x:i j i j=^ h  For easier reference below, the nota-
tion from “Time-Scale Separation Algorithm” is adopted; 
that is, the module velocity states x :7 12  are denoted by xf   
(f for “fast”) and the remaining states by xs  (s for “slow”). 
Notice from (36) that x k v k1f + =6 6@ @ (the module velocities 
are equal to the previously commanded reference), which 
corresponds to the assumption of ideal feedback loops. By 
using this approximation in the controller, no measure-
ments or estimates of the module velocities are required. 
Estimates for the states xs  are available from the state esti-
mator shown in Figure 17.

State-Feedback Controller Design
The controller K  is obtained from a discrete-time LQR 
design. In LQR design (see [50], for example), a quadratic 
cost function involving weights on system states x  and 
system inputs y  is minimized, which allows one to trade 
off control performance with control effort. The resulting 
optimal controller is a static feedback gain.

To ensure zero steady-state error of the module angles, 
plant (36) is first augmented with integrator states on the 
module angles; that is, the system model used for the LQR 
design is
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where [ ]x kint  are the augmented integrator states, and I6 6#  is 
the six-by-six identity matrix. The augmented integrator states 
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x7

x12
K

`Au, Buj

v1 u1

u6v6

x

-

-

· · · xnx13

x1 · · · x6

figure 18 the cascaded control architecture. the block ( , )A B  
denotes the cube model (5) and the blocks K loc  represent the local 
velocity controllers on each drive unit. the dashed block com-
bines the plant with the local feedback loops. a simplified model 
( , )A Bu u  for this block is derived in “time-scale separation algo-
rithm” with the assumption of high-gain controllers K loc . the con-
troller K  is the centralized state-feedback controller that is also 
shown in figure 14. When comparing figures 14 and 18, notice 
that the inner feedback loops are not shown in figure 14; they can 
be thought of as included in the block Plant. furthermore, the Esti-
mator block is omitted here, since a plant with state output is 
assumed for the purpose of controller design.
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I ntegral control is typically used to improve the steady-state  

 behavior of a feedback control system. in particular, the 

quantity whose integral is used in a feedback controller (for 

example, a system state) is forced to zero when the system 

reaches steady state. 

the control algorithm described in the section “control”  

includes integral feedback on the module angles. the analysis 

below shows that the integrators in the controller ensure aver-

age zero steady-state error not only for the module angles, but 

for all states—despite a possible bias on the estimates of the 

cube states (pitch, roll, and their rates). first, the analysis is 

presented for a general linear time-invariant system, and then 

the results are interpreted for the balancing cube.

consider the discrete-time system
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the state measurements
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are corrupted by zero-mean sensor noise ,w k w k w k1 2=^ h6 6 6@ @ @
,w k w k w k1 2=^ h6 6 6@ @ @  and a static bias .d2  notice that the measurement of x1  

is bias-free. a feedback controller with integral action on the 

measurement of state x1  is used,

[ ] [ ] ( [ ] [ ])x k x k T x k w k1int int s 1 1+ = + +  (s11)
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where F is a static gain matrix, and Ts is the sampling time. 

the following assumptions are made on the system and the 

controller:

(a1) B1  has full column rank.

(a2) I A B B B B AT
22 2 1 1

1
1 12- +

-^ h  is invertible.

(a3)  the closed-loop system given by (s9), (s11), and (s12) 

is stable.

it is argued below that, under these assumptions, all states 

[ ]x k  of (s9) have zero steady-state mean,
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, (s13)

for any static disturbance .d2

the closed loop system given by (s9), (s11), and (s12) reads
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since [ ]w k  has zero mean, taking expected values yields

 [ [ ]] [ [ ]] .x k A x k Bd1E E 2+ = +u r u r  (s15)

from (a3), it follows that x kE u66 @@ converges to a constant ,xr

 [ [ ]] ,lim x k xE
k

=
"3

u r  (s16)

which is the solution to

 .x Ax Bd2= +r r r r  (s17)

from the equation for x intr  in (s17) [with ABr r and ABr r  as defined 

in (s14)], it follows that

 ,x T x x x 0sint int1 1+= + =r r r r  (s18)

which is the aforementioned typical effect of integral action on 

x1 . using this result, the top rows of (s17) read 

 ( ) ,A B F x B F x B F d0 int int12 1 2 2 1 1 2 2= + + +r r  (s19)

which, with assumption (a1), yields

 ( ) ( ) .F x B B B A B F x F dint int
T T
1 1

1
1 12 1 2 2 2 2=- + --r r  (s20)

using this result, (s17) can be solved for ,x2r
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 ( )( ) ,I A B AB B B x 0TT
22 2 1 1

1
1 12 2+ - + =- r  (s22)

which, by assumption (a2), has the unique solution .x 02 =r  

hence, (s13) holds as claimed. furthermore, from (s20), it can 

be seen that the bias d2  maps to steady-state offsets in the 

integrator states given by the relation

 .F x F dint int 2 2=-r  (s23)

INTERpRETATION fOR ThE bALANCING CubE

the cube model (36) corresponds to (s9) with x1  being the mod-

ule angles and x2  the remaining states. the absolute encoder 

measurements of the module angles can be considered bias 

free. the controller (40)–(41) is of the form (s11)–(s12), and it can 

be shown that the assumptions (a1)–(a3) hold.

hence, the control system ensures that the deviation from 

the equilibrium is zero for all states—on average and in the 

long run—despite any static offset in the estimates of the cube 

states. such offsets result from imu sensor biases and the fact 

that the cube’s physical equilibrium is not exactly at the model-

based pitch and roll equilibrium angles in (3) and (4).

an intuitive explanation for this property of the feedback 

system is as follows: enforced by the integral feedback, the 

module angles are on average at the module equilibrium angles 

given in (3) or (4). these module angles define a unique equi-

librium for the cube tilt parameterized by pitch and roll angles. 

since the feedback control system is stable, the average pitch 

and roll angles must be equal to the equilibrium angles— 

otherwise the cube would not be in equilibrium on average and, 

hence, it would fall.

What Is the Effect of Integral Action in the Controller?
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are eventually implemented in the controller. In addition to 
ensuring that the module angles are, on average, at their set 
points, any offset in the cube tilt estimates (for example, due to 
sensor bias or imperfect calibration) is compensated by the inte-
grators. This property of the control system is analyzed in detail 
in “What Is the Effect of Integral Action in the Controller?”

In addition to the usual weights on states and system 
inputs in LQR control, the difference in the control com-
mands k v kv 1- -6 6@ @ is also penalized. This is motivated 
by the special structure of the model (36): penalizing the 
difference in velocity commands corresponds to imposing 
a penalty on the applied module torque [the original system 
input in (5)] since change in velocity is proportional to 
acceleration, which itself relates to torque at a module. 
Therefore, the cost function
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(38)

is used with suitable weighting matrices , ,Q R  and H (numer-
ical values may be found in [44]). Since v k x k1 f- =6 6@ @, (38) 
can be reformulated as a standard LQR cost with nonzero 
weights on state and input cross terms,
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where [ ]: , , .x k x k x k x kf s int=u ^ h6 6 6@ @ @  The discrete-time LQR 
design problem can be solved using standard tools [50] 
(such as the Matlab implementation dlqr). Let F F F1 2=6 @ be 
the resulting gain matrix with F R n6

1 !
#  corresponding  

to the gains on ( [ ], [ ]),x k kAf s  and F R2
6 6! #  corresponding 

to the gains on the integral states .kxint 6 @  Using the approx-
imation [ ] [ ]x k v k 1f = -t  in addition, a representation of 
controller K  then is

 [ ] [ ] [ ]k k T I x k1 0s s6 6g g+ = + # t6 @  (40)

 [ ] [ ]
[ ]

[ ] ,v k F k F
v k

x k
1

s
2 1g= +

-
t

; E  (41)

which has the state estimates [ ]x kst  from Figure 17 as input.

ExpERIMENTS
To compare the balancing performance in experiments, the 
root mean square (RMS) value of the state estimates,

 : [ ]x
k

x k1RMS
i i

k

k
2

1
=

=
r

t
r

/  (42)

for data of length ,kr  is used (for the experimental evaluation, 
the motor shaft velocity measurement from the motor 
encoder scaled by the gear ratio is used as an estimate for  
the module velocity; estimates of all other states are as in 
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figure 19 corner balancing experiment. Part (a) shows module 
2’s angle x2t  (blue) and module 5’s angle x5t  (red); part (b) shows 
the cube pitch x13t  (blue) and roll x15t  (red). all angles are about 
the nominal equilibrium (3). at roughly 15 s, the cube was dis-
turbed by pushing one of its corners. from the data, it is obvious 
that module 2 moves more than module 5. the reason is that the 
bottom modules are more effective than the top modules and, 
hence, used more by the optimal state-feedback controller. this 
fact is investigated in “Why are the top modules used less?”
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figure 20 command tracking for corner balancing experiment. 
the inner feedback loop on each module with controller K loc

tracks velocity commands from the outer-loop state-feedback 
controller  K  (compare  figure 18). as an example for the track-
ing performance of the inner loop, the angular velocity (blue) and 
the corresponding command (red) are shown for module 2.  
the module velocity is computed as the change of the absolute 
encoder angle signal per time step, ( [ ] [ ]) / .y k y k T1enc enc

s2 2- -  the 
module velocity signal shows a significant quantization error, 
which is caused by the quantization of the absolute encoder.  
the signal is, however, not used in feedback but only to demon-
strate the tracking capabilities of the inner feedback loop here. 
the data is from the same experiment as in figure 19.
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Figure 17). The RMS values for a sequence of 5 min of undis-
turbed balancing on a corner are given in Table 5 (middle 
column). The data shows that the RMS values for angular 
position and velocity differ by more than one order of magni-
tude for the bottom modules (1–3) versus the top ones (4–6) 
for corner balancing. The top modules are used significantly 
less because the corresponding inputs are much less effective 
than those of the bottom ones. This fact is explained by con-
sidering the analogy of a one dimensional abstraction of the 
balancing cube in “Why Are the Top Modules Used Less?”

In a different experiment, the cube was disturbed by push-
ing one of its corners. A 60-s balancing sequence with the  
disturbance applied at 15 s is shown in Figure 19. For a shorter 
sequence of the same experiment, the angular velocity com-
mand and the actual angular velocity of module 2 are shown 
in Figure 20. The data demonstrates the tracking capability of 

the inner velocity controllers, which was assumed for the der-
ivation of model (36) in “Time-Scale Separation Algorithm.”

From the data in Table 5 and Figures 19 and 20, it can be 
seen that the cube exhibits slight motion during balancing; 
that is, it is not perfectly steady. Some motion of the cube is 
inevitable due to excitation of the feedback system by sensor 
noise. Other effects such as network delays or gear backlash 
may be partially compensated for with a more sophisticated 
controller design. A discussion on the achievable balancing 
performance of the cube based on the H2  system norm is 
presented in “How Steady Can the Cube Balance?” The slight 
oscillations during balancing do, however, enable viewers to 
perceive the cube as a dynamic sculpture.

Experimental data for balancing the cube on one of its edges 
is shown in Table 5 (right column) and Figure 21. It can be seen 
that the cube exhibits less motion in edge balancing compared 
to corner balancing. This behavior is expected, since only one 
DOF needs to be stabilized when on edge (compared to two for 
corner balancing) with the same number of actuators.

CONCLuDING REMARkS
This article presents the balancing cube and, in particu-
lar, the control system that enables the cube to live up to 
its name. The cube is a multiagent 3-D inverted pendu-
lum system: stability is achieved through the coordina-
tion of six rotating bodies on the cube—each equipped 
with sensors, actuation, and a computer, and all commu-
nicating with each other over a digital network. With 
this architecture, the balancing cube combines the  
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figure 21 edge balancing experiment. shown in the top graph 
are the angles of modules 1, 2, and 6, x1t  (blue), x2t  (red), and x6t  
(green), respectively, and, in the bottom graph, the cube pitch 
angle x13t . all angles are about the nominal equilibrium (4). at 
roughly 15 s, the system was disturbed by pushing the cube. the 
motion of module 6, which is one of the lighter modules, is less 
than the motion of modules 1 and 2.

State
rmS Value xRMS

i

corner balancing
rmS Value xRMS

i

edge balancing
angle module 1 0.1036 0.0434
angle module 2 0.1214 0.0581
angle module 3 0.1225 0.0433
angle module 4 0.0080 0.0158
angle module 5 0.0092 0.0255
angle module 6 0.0098 0.0159
angular velocity 
module 1 0.2688 0.1034
angular velocity 
module 2 0.3266 0.1446
angular velocity 
module 3 0.3227 0.1029
angular velocity 
module 4 0.0275 0.0382

angular velocity 
module 5 0.0316 0.0658

angular velocity 
module 6 0.0281 0.0391

cube pitch angle 0.0048 0.0034

cube pitch rate 0.0103 0.0061

cube roll angle 0.0066 —

cube roll rate 0.0144 —

tAble 5 balancing performance. the root mean square 
(rmS) value xRMS

i  according to (42) measures the 
average squared deviation of the state estimates from the 
equilibrium x 0= . it is used as a measure for the control 
performance. the data for corner balancing shows that the 
motion of the bottom modules (1–3) is an order of magnitude 
greater than the motion of the top ones (4–6). the reason 
for this is explained in “Why Are the top modules used 
less?” Also for edge balancing, the motion of modules 
1–3 is greater than the motion of the modules 4–6. the 
difference however, is not as pronounced as for corner 
balancing. Due to the symmetrical arrangement of modules 
1 and 3, and modules 4 and 6, their rmS values are almost 
the same. As expected, the balancing performance on  
edge is better than on corner since only one dimension 
needs to be stabilized (instead of two).
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When the cube balances on one of its corners, the top 

modules move considerably less than the bottom ones 

(see the section “experiments”). to understand the impact 

of the mounting position on a module’s ability to balance the 

cube, a one-dimensional (1-D) abstraction of the balancing 

problem is considered first. the controllability of an inverted 

pendulum that is balanced by a single module is analyzed 

as a function of the module’s mounting height on the pendu-

lum. the insights of the 1-D analysis are then interpreted for  

the cube.

an inverted pendulum of the above type is shown in  

figure s4. the rotating arm that balances the planar invert-

ed pendulum about the single rotational Dof is identical to 

the moving part of the modules on the cube. the system 

is essentially a double pendulum with torque applied at the 

joint linking the two bodies (see figure s5). this type of 

double pendulum has also been termed an acrobot, and it 

is a typical example of an underactuated system [38], [s4]. 

for the analysis herein, the two bodies are approximated as 

point masses.

the equations of motion of the point-mass acrobot are, [s4],

 ( ) ( , ) ( ) ,H q q C q q q G q
0

x
+ + =p o o ; E  (s24)

where q  are the generalized coordinates (angles of the two 

links, defined in figure s5), x  is the torque applied at the sec-

ond link, and the matrices are given by
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=

+ + +

+
= G  (s27)

with g0  the gravity constant and all other parameters as given 

in figure s5.

next, the local controllability of the acrobot about the 

equilibrium configuration of an upright pendulum body and 

a downward pointing module is analyzed for different val-

ues of the link location l . for this purpose, the system (s24) 

is linearized about the equilibrium given by ( / , )q 2r r=r  and 

.0x =r  the obtained state-space representation with the state 

( , ) ( , )x q q q 0= -o r  reads

Why Are the Top Modules Used Less?

l1

l2

l

m1

q1

q2

x

m2

Gravity

z

x

figure S5 acrobot. the acrobot is an abstraction of the pen-
dulum in figure s4. the module is represented by mass m2 , 
which is linked through a revolute joint to mass m1  represent-
ing the pendulum body, which itself is linked to the ground. the 
acrobot is a typical example of an underactuated system: it has 
two degrees of freedom (described by the generalized coordi-
nates ( , )q q q1 2= ) with only one actuator (torque x  applied at 
the link between m1  and m2 ). the controllability of the system 
about the equilibrium given by ( / , )q 2r r=r  and 0x =r  is stud-
ied in this section for different location l  of the module link on 
the pendulum.

figure S4 inverted pen-
dulum. the pendulum is a 
one-dimensional abstrac-
tion of the balancing cube: 
one module balances the 
pendulum body about one 
rotational degree of free-
dom. this system was 
built as a prototype prior to 
the cube.



December 2012 « IEEE CONTROL SYSTEMS MAGAZINE 71

( ) ( ) ( ) ( , ) ( )

( ) ( ( ))

( )

.

x H q q
G q

I

H q C q x H q

l
g

l l
g l l l

m l
g lm

m l l
g m l m l l l

x

m l l
l l

m m l l
m l m l l

0

0

0
0

0
0

0
0

1
0

0

0

0
1

0

0

0
0

:

:

A

B

1 1 1

1

0

1 2

0 1 2

1 1
2

0 2

1 1
2

2

0 1 1
2

2 2

1 1
2

2

2

1 2 1
2

2
2

1 1
2

2 2
2

2
2

x

x

= - - +

=

- -

-

-
+ -

+
-

+ -

- - -

=

=

-

-

o r r r r r

R

T

S
S
S
S
S
S
S

R

T

S
S
S
S
S
S
S

> ;>
V

X

W
W
W
W
W
W
W

V

X

W
W
W
W
W
W
W

H EH

1 2 3444444444444 444444444444

1 2 344444 44444

(s28)

for varying l  and fixed parameter values . m/s ,g 9 810
2=

. m, . m, . kg, . kg,m ml l0 66 0 2 5 3 3 71 2 1 2= = = =  which are rep-

resentative for the pendulum in figure s4, the two smallest sin-

gular values of the controllability matrix [ , , , ]B AB A B A BC 2 3= r r r r r r r  

are shown in figure s6. it can be seen that the system  

becomes uncontrollable for . m . m . ml 0 66 0 2 0 86= + = . more 

generally, it can be shown from (s28) that for l l l1 2= +  and  

arbitrary , , , ,l l m and m1 2 1 2  the rank of C  drops from four to two. 

that is, for the configuration where the center of gravity (cg) of 

the module is at the same height as the cg of the pendulum, 

the system becomes locally uncontrollable.

how can this insight be interpreted for the cube? it can be 

expected that the location of a module relative to the cg of 

the cube body is a crucial factor in how effectively the mod-

ule can act on it. the top modules’ cg is above the cg of the 

cube body, whereas the bottom modules’ cg is well below 

(especially since the lower modules are heavier and their cg 

is lower). in analogy to the 1-D analysis, it can therefore be 

expected that the top modules are less effective than the 

bottom ones. this is confirmed by the analysis of the singu-

lar values of the controllability matrix of the cube shown in 

figure s7.

in conclusion, the top modules are used less, since they 

are less effective for control. the controller resulting from 

the lQr design seeks to minimize the total control effort and 

hence tends to use mainly the more effective bottom modules 

(equal weighting provided).

REfERENCES
[s4] m. W. spong, “the swing up control problem for the acrobot,” IEEE 
Control Syst. Mag., vol. 15, no. 1, pp. 49–55, feb. 1995.
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figure S7 singular values of the controllability matrix for 
corner balancing. the controllability of the cube is analyzed 
for the case that only the top modules (blue) and the case 
that only the bottom modules (green) are used. the control-
lability matrix C  is computed from the model (5) after remov-
ing the states and inputs corresponding to the unused 
modules. the first six singular values (a) correspond mainly 
to motion of the modules, whereas the last four (b) corre-
spond mainly to cube states. the fact that the last four sin-
gular values are smaller than the first six means that the 
cube states are “harder” to control than the module states 
(which is expected since the cube’s degrees of freedom are 
not directly actuated). furthermore, stabilizing the cube is 
harder when only the top modules are used compared to 
using only the bottom ones. this is indicated by the corre-
sponding singular values being almost one order of magni-
tude smaller. since the top modules are less effective in 
influencing the cube motion, they are used less by the opti-
mal lQr controller for all six modules, which is designed in 
the section “control.”
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challenges of an unstable nonlinear system, a distrib-
uted control system, and a networked control system.

The concept of balancing a rigid body with multiple 
modules can also be used to balance other 3-D shapes. 

The modeling techniques as well as the developed  
state estimation and control algorithms are generalized 
from the concrete representation of the cube, and can be 
applied to other shapes with slight modification. See 

T he cube is not perfectly steady when it balances (see the 

section “experiments”). since the control system relies on 

sensory feedback for stabilization, sensor noise (mainly from 

the imus) inevitably excites the closed-loop system. in addi-

tion, unmodeled effects such as backlash or network-induced 

delays not taken into account in the control design can further 

deteriorate the balancing performance.

the question of how steady the cube can balance in principle 

with the current sensors is analyzed by employing tools from  

optimal H2  controller design. the H2  system norm is a measure 

of the overall gain of a dynamic system driven by noise: it equals 

the root mean square (rms) value of the system output when the 

input is white noise of unit intensity [s5]. hence, by appropriately 

scaling the input and output channels, the H2  norm is used to 

analyze the response of the cube (measured as the rms of its 

state) to sensor noise excitation. it corresponds to the achievable 

balancing performance if no other nonidealities in the control 

system are present. for an introduction to H2  optimal controller 

design, the interested reader is referred to [s5].

for the H2  analysis and synthesis below, the discrete-time 

model (36) is assumed with noisy state measurements; that is,

 [ ] [ ] [ ]x k Ax k B kv1+ = +u u  (s29)

 [ ] [ ] [ ],y k x k w k1= +u   (s30)

where the artificial measurement noise w k1 6 @ is assumed to 

have zero mean and variance Rn . the variance Rn  is chosen 

below to match the variance of the state estimates resulting 

from the state estimation algorithms employed on the cube. 

hence, the state estimation problem is abstracted away for the 

purpose of this analysis.

the H2  norm is computed for the closed-loop system given 

by (s29), (s30), and, first, the actual balancing controller K  

from (40), (41), and, second, an H2  optimal controller. the 

analysis allows one to estimate how well the control system 

would perform under ideal circumstances (that is, if the linear 

model captured the dynamics perfectly). it also allows one to 

determine how much could be gained from a more sophisti-

cated controller design.

H2  ANALYSIS Of bALANCING CONTROLLER
the generalized plant shown in figure s8 combines the cube 

model (36) with exogenous weighted inputs and outputs that are 

used to express the analysis objective. the H2  norm Gw z 21 1"  

from measurement noise input w k1 6 @ to the cube states 

[ ] [ ]z k C x kz1 =  is a measure of the balancing performance  

(Cz is chosen to select a subset of the state vector [ ]) .x k  the 

norm corresponds to the rms of the output [ ]z k1  under noise 

excitation representative of the sensor noise on the balancing 

cube. the additional green blocks in figure s8 are required for 

the H2  optimal controller design presented later.

to have a noise excitation representative of the actual cube 

hardware, the measurement noise variance Rn  is chosen to be 

equal to the variance of the state estimates presented in the 

section “state estimation.” hence, the noise variance on the 

cube states is set to be

 diag Var [ ] , Var [ ] , Var [ ] , Var [ ]R k k k kn,cube
c b b c c= t ot t ot` j8 8 6 8B B @ B  

(s31)

for corner balancing, and 

 diag Var [ ] , Var [ ]R k kn,cube
e b b= t ot` j8 8B B  (s32)

for edge balancing, where , , ,k k kb b ct ot t6 6 6@ @ @  and [ ]kcot  are the 

cube state estimates in (33)–(35). given the noise variance of 

Bu Delay

w2[k]

w1[k]

z2[k]

z1[k]

yu [k]v[k]

Cz

K

Generalized Plant

Au

Qn
1/2

Rn
1/2

Ru 1/2

figure S8 generalized plant used to analyze the cube’s bal-
ancing performance. the blocks Au  and Bu  represent the cube 
model (36). the output y ku6 @ feeds to the controller K , which 
computes the system input [ ] .kv  the exogenous input w k1 6 @ 
and exogenous output [ ]z k1  are used to express the design 
objective: input w k1 6 @ is scaled with Rn

/1 2  (the square root of 
the measurement noise variance), and [ ]z k1  are the system 
states of interest, which are selected from [ ]x k  by means of the 
output matrix Cz . hence, the H2  norm from input [ ]w k1  to 
output [ ],z k1  ,Gw z 21 1"  is the rms of the selected state sig-
nals when the system is excited by noise of variance Rn . it is 
therefore a measure of the cube’s balancing performance. the 
additional green signals and blocks (input [ ]w k2  with weighting 
Qn

/1 2  and output [ ]z k2  with weighting )R /1 2u  are required for the 
H2  controller synthesis problem to be well defined.

How Steady Can the Cube Balance?
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“Other Balancing Shapes” for a discussion and some con-
ceptual ideas.

Problems addressed during the design and construction 
phase of the project have triggered unanticipated research 

results that are applicable beyond the cube itself. The “Time-
Scale Separation Algorithm,” first presented in [51], is an exam-
ple. Without knowing the details of the feedback controllers, 
and yet taking their effects into account, this algorithm yields  

the imu sensors, first-order approximations of the variances 

in (s31) and (s32) can readily be computed from the involved  

estimator equations. since the quantization error on the mod-

ule encoders can be neglected, the noise variances for the 

modules states are chosen to be substantially lower than 

those for the cube states; hence, the overall noise variance 

is set to

 
( )

,R
R I

R
10

0
0

n
n,cube

n,cube

6v
=

- r= G  (s33)

where ( )$vr  denotes the largest singular value.

With the weighting matrix (s33) and output matrix Cz  cho-

sen to select the cube state(s) of interest, the H2  norm of the 

generalized plant in figure s8 from w k1 6 @ to [ ]z k1  can be 

evaluated for the balancing controller (40), (41). the results are 

shown in figure s9 in green. the comparison to the experi-

mental data (blue) reveals that the practically achieved balanc-

ing performance with the current lQr controller is lower than 

the theoretically achievable performance.

H2  OpTIMAL DESIGN
to design an H2  optimal controller for the generalized plant 

in figure s8, some augmentations are necessary to make 

the H2  synthesis problem well defined. for this purpose, 

the generalized plant is augmented with the process noise 

input w k2 6 @ (weight Qn ) and weighted control signal [ ]z k2  

(weight Ru ). the process noise intensity is chosen to be con-

siderably smaller than the measurement noise, to have a 

negligible effect on the controller design, ( ) .Q R I10n n
6v= - r  

for simplicity and to allow for a fair comparison in terms of 

control effort, diagonal weights R It=u u  with parameter tu  

are used for the control input, where 10 7t = -u  has been 

tuned such that the H2  gain from input ( [ ], [ ])w k w k1 2  to 

the output [ ]z k2  is comparable to the respective gain when 

using the actual controller (40), (41). the output matrix Cz  

is chosen as diag( . , )C I I0 01z 12 12= #  to express the primary 

design objective of minimizing the cube state variance.

the H2  optimal controller that minimizes the H2  norm 

from exogenous input ,w k w k w k1 2=^ h6 6 6@ @ @  to exogenous 

output ,z k z k z k1 2=^ h6 6 6@ @ @  can be obtained using standard 

H2  synthesis tools (for example, the matlab implementa-

tion h2syn). the resulting H2  gains are shown in figure s9 

(red). the resulting smaller gains compared to the lQr de-

sign (green) are at the expense of a higher order controller. 

the H2  design presented herein is mainly of interest as a 

theoretical bound on the balancing performance. it does not 

take into account other design objectives that are of practi-

cal importance, such as steady-state behavior or actuator 

limitations.

in conclusion, the results of this section point to a potential 

improvement in the balancing performance of the cube. this 

may partly be achieved by taking currently unmodeled effects 

(such as gear backlash or communication delays) into account 

in the controller design.
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figure S9 H2  analysis of balancing performance on (a) edge 
and (b) corner. the bar diagram on the left shows the H2  norm 
from state noise input w1  to the cube states x13  through xn , 
both individually and combined. these norms are obtained from 
experimental data (blue), from the linear model with the actual 
balancing controller (green), and with the H2  optimal controller 
(red). the H2  norm corresponds to the rms value of the output 
signals under noise excitation of the system. the experimental 
data is the same as in table 5. the diagram on the right shows 
the rms displacement of the cube tip that is equivalent to the 
rms of the cube tilt angles x13  and x15  (it is computed analo-
gously to (s2), (s3) in “What is the cube’s maximal balancing 
range?”).
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a simplified discrete-time model of a continuous-time process 
under high-gain feedback on some of its states. A limiting prop-
erty of the matrix exponential was also derived in the process. 
Another example is the algorithm for estimating the tilt of the 
cube (presented both in this article and in [49]). The algorithm 
can be used to estimate the tilt of any rigid body with only rota-
tional degrees of freedom from measurements of multiple iner-
tial sensors without requiring a dynamic system model.

For the control and estimation algorithms presented 
herein, full communication between the agents is assumed: 
each agent shares its sensory data with all its peers at the 
closed-loop rate. The state estimation and control design prob-
lems can hence be treated in a centralized fashion. In [40], [41], 
the problem of reduced communication state estimation is 
addressed. Therein, event-based communication protocols 
are used to reduce the amount of sensor data shared over the 
network while maintaining a certain estimation performance.
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